Numerical simulation based on fuzzy stochastic analysis

被引:8
|
作者
Moeller, Bernd [1 ]
Graf, Wolfgang [1 ]
Sickert, Jan-Uwe [1 ]
Reuter, Uwe [1 ]
机构
[1] Tech Univ Dresden, Inst Stat & Dynam Struct, Dresden, Germany
关键词
uncertainty; fuzzy random variable; fuzzy probability; structural analysis;
D O I
10.1080/13873950600994514
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper mathematical methods for fuzzy stochastic analysis in engineering applications are presented. Fuzzy stochastic analysis maps uncertain input data in the form of fuzzy random variables onto fuzzy random result variables. The operator of the mapping can be any desired deterministic algorithm, e. g. the dynamic analysis of structures. Two different approaches for processing the fuzzy random input data are discussed. For these purposes two types of fuzzy probability distribution functions for describing fuzzy random variables are introduced. On the basis of these two types of fuzzy probability distribution functions two appropriate algorithms for fuzzy stochastic analysis are developed. Both algorithms are demonstrated and compared by way of an example.
引用
收藏
页码:349 / 364
页数:16
相关论文
共 50 条
  • [21] Fuzzy stochastic differential equations
    Hu, LJ
    Wu, RQ
    Zhao, WG
    7TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL XVI, PROCEEDINGS: SYSTEMICS AND INFORMATION SYSTEMS, TECHNOLOGIES AND APPLICATION, 2003, : 273 - 277
  • [22] A Superiority-Inferiority-Based Inexact Fuzzy Stochastic Programming Approach for Solid Waste Management Under Uncertainty
    Qian Tan
    Gordon H. Huang
    Yanpeng Cai
    Environmental Modeling & Assessment, 2010, 15 : 381 - 396
  • [23] Some fuzzy stochastic orderings for fuzzy random variables
    Zarei, R.
    Amini, M.
    Roknabadi, A. H. Rezaei
    Akbari, M. G.
    FUZZY OPTIMIZATION AND DECISION MAKING, 2012, 11 (02) : 209 - 225
  • [24] Stochastic Response Surface Based Simulation Of Ground Water Modeling
    Ranade, A. K.
    Pandey, M.
    Datta, D.
    INTERNATIONAL CONFERENCE ON MODELING, OPTIMIZATION, AND COMPUTING, 2010, 1298 : 213 - 218
  • [25] Some fuzzy stochastic orderings for fuzzy random variables
    R. Zarei
    M. Amini
    A. H. Rezaei Roknabadi
    M. G. Akbari
    Fuzzy Optimization and Decision Making, 2012, 11 : 209 - 225
  • [26] Numerical analysis of uncertain temperature field by stochastic finite difference method
    Wang Chong
    Qiu ZhiPing
    Wu Di
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2014, 57 (04) : 698 - 707
  • [27] Sampling, Metamodeling, and Sensitivity Analysis of Numerical Simulators with Functional Stochastic Inputs
    Nanty, Simon
    Helbert, Celine
    Marrel, Amandine
    Perot, Nadia
    Prieur, Clementine
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2016, 4 (01): : 636 - 659
  • [28] Optimized and Robust Design of Tires Based on Numerical Simulation
    Kaliske, Michael
    Serafinska, Aleksandra
    Zopf, Christoph
    TIRE SCIENCE AND TECHNOLOGY, 2013, 41 (01) : 21 - 39
  • [29] Numerical analysis of uncertain temperature field by stochastic finite difference method
    WANG Chong
    QIU ZhiPing
    WU Di
    Science China(Physics,Mechanics & Astronomy), 2014, (04) : 698 - 707
  • [30] Numerical analysis of uncertain temperature field by stochastic finite difference method
    Chong Wang
    ZhiPing Qiu
    Di Wu
    Science China Physics, Mechanics and Astronomy, 2014, 57 : 698 - 707