Heat and mass transfer characteristics of ultra-thin flat heat pipe with different liquid filling rates

被引:36
作者
Li, Deqiang [1 ]
Huang, Zhe [1 ]
Liao, Xiaonan [1 ]
Zu, Shuaifei [1 ]
Jian, Qifei [1 ]
机构
[1] South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510641, Guangdong, Peoples R China
关键词
Ultra-thin flat heat pipe; Filling rates; Vapor-liquid interface; Visualization; Thermal resistance; EVAPORATOR RESISTANCE MEASUREMENT; VISUALIZATION EXPERIMENTS; PERFORMANCE; WICK;
D O I
10.1016/j.applthermaleng.2021.117588
中图分类号
O414.1 [热力学];
学科分类号
摘要
The visualization method is used to study the heat transfer performance of ultra-thin flat heat pipe (UTFHP) with a vapor chamber thickness of only 0.8 mm under different liquid filling rates, and observe the change of vapor-liquid interface in mesh wick and the flow characteristics of working fluid in vapor chamber, which has important reference value and guiding significance for determining the optimal liquid filling rate, improving heat transfer performance and analyzing the flow of working medium in ultra-thin flat heat pipe. The experimental results show that the optimum filling rate is 15%, the working medium just fills the wick, and the thermal resistance is the smallest, which is 1.2 celcius/W. At the excessive liquid filling rates, the boiling phenomenon is observed in the heating area at 20 W, but the effect of excessive liquid filling on improving the heat transfer limit is very limited, which only increases the heat transfer limit by 4 W. Capillary limit is the key factor restricting the heat transfer limit of ultra-thin flat heat pipe. The excessive liquid forms a liquid bridge in the vapor chamber, which will hinder the vapor flow. Meanwhile, it will destroy the capillary flow of the condensing working medium, resulting in liquid accumulation in the condensing area and increasing the thermal resistance of the plat heat pipe. Under the condition of slight inclination angle, the condensed working medium accumulated in the condensation area is obviously reduced, at 45% liquid filling rate, the heat transfer limit reaches 28 W.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Local heat transfer approach to the start-up analysis of an ultra-thin loop heat pipe
    Pagliarini, Luca
    Domiciano, Kelvin G.
    Krambeck, Larissa
    Bozzoli, Fabio
    Mantelli, Marcia B. H.
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2025, 163
  • [22] Experiment study on heat transfer capability of an innovative gravity assisted ultra-thin looped heat pipe
    Hong, Sihui
    Zhang, Xinqiang
    Wang, Shuangfeng
    Zhang, Zhengguo
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2015, 95 : 106 - 114
  • [23] Heat transfer performance of ultra-thin plate heat pipe with sintered porous channels structures wick
    Zhu M.
    Bai P.
    Hu Y.
    Huang J.
    Huagong Xuebao/CIESC Journal, 2019, 70 (04): : 1349 - 1357
  • [24] Corner flow characteristics in a silicon-based ultra-thin flat-grooved heat pipe with double-end cooling
    Lv, Yitong
    Wang, Bo
    Gan, Zhihua
    Yu, Zitao
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2024, 198
  • [25] Managing high heat flux up to 500 W/cm2 through an ultra-thin flat heat pipe with superhydrophilic wick
    Lv, Lucang
    Li, Ji
    APPLIED THERMAL ENGINEERING, 2017, 122 : 593 - 600
  • [26] Thermal performance of an ultra-thin flat heat pipe with striped super-hydrophilic wick structure
    Cui, Zhuo
    Jia, Li
    Wang, Zhou
    Dang, Chao
    Yin, Liaofei
    APPLIED THERMAL ENGINEERING, 2022, 208
  • [27] Research on heat transfer performance of spiral woven wire mesh composite capillary wick ultra-thin heat pipe
    Chen, Qi
    Li, Jinwang
    Cong, Tianshu
    APPLIED THERMAL ENGINEERING, 2025, 262
  • [28] Heat transfer characteristics of flat evaporator loop heat pipe under high heat flux condition with different orientations
    Odagiri, Kimihide
    Nagano, Hosei
    APPLIED THERMAL ENGINEERING, 2019, 153 : 828 - 836
  • [29] CFD simulation on the heat transfer and flow characteristics of a microchannel separate heat pipe under different filling ratios
    Yue, Chang
    Zhang, Quan
    Zhai, Zhiqiang
    Ling, Li
    APPLIED THERMAL ENGINEERING, 2018, 139 : 25 - 34
  • [30] An ultra-thin miniature loop heat pipe cooler for mobile electronics
    Zhou, Guohui
    Li, Ji
    Lv, Lucang
    APPLIED THERMAL ENGINEERING, 2016, 109 : 514 - 523