Examining size-strength relationships at hippocampal synapses using an ultrastructural measurement of synaptic release probability

被引:47
作者
Branco, Tiago [2 ,3 ]
Marra, Vincenzo [1 ]
Staras, Kevin [1 ]
机构
[1] Univ Sussex, Sch Life Sci, Brighton BN1 9QG, E Sussex, England
[2] UCL, Dept Neurosci Physiol & Pharmacol, London WC1E 6BT, England
[3] UCL, Wolfson Inst Biomed Res, London WC1E 6BT, England
基金
英国生物技术与生命科学研究理事会; 英国惠康基金;
关键词
Synapse; FM; 1-43; Photoconversion; Release probability; Reconstruction; Electron microscopy; CENTRAL-NERVOUS-SYSTEM; NEUROTRANSMITTER RELEASE; PRESYNAPTIC BOUTONS; VESICLE CYCLE; TERMINALS; POOL; KINETICS; ENDOCYTOSIS; PLASTICITY; MICROSCOPY;
D O I
10.1016/j.jsb.2009.10.014
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Release probability (p(r)) is a fundamental presynaptic parameter which is critical in defining synaptic strength. Knowledge of how synapses set and regulate their p(r) is a fundamental step in understanding synaptic transmission and communication between neurons. Despite its importance, p(r) is difficult to measure directly at single synapses. One important strategy to achieve this has relied on the application of fluorescence-based imaging methods, but this is always limited by the lack of detailed information on the morphological and structural properties of the individual synapses under study, and thus precludes an investigation of the relationship between p(r) and synaptic anatomy. Here we outline a powerful methodology based on using FM-styryl dyes, photoconversion and correlative ultrastructural analysis in dissociated hippocampal cultured neurons, which provides both a direct readout of p(r) as well as nano-scale detail on synaptic organization and structure. We illustrate the value of this approach by investigating, at the level of individual reconstructed terminals, the relationship between release probability and defined vesicle pools. We show that in our population of synapses, p(r) is highly variable, and while it is positively correlated with the number of vesicles docked at the active zone it shows no relationship with the total number of synaptic vesicles. The lack of a direct correlation between total synaptic size and performance in these terminals suggests that factors other than the absolute magnitude of the synapse are the most important determinants of synaptic efficacy. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:203 / 210
页数:8
相关论文
共 42 条
[1]   Single synaptic vesicles fusing transiently and successively without loss of identity [J].
Aravanis, AM ;
Pyle, JL ;
Tsien, RW .
NATURE, 2003, 423 (6940) :643-647
[2]   The kinetics of synaptic vesicle reacidification at hippocampal nerve terminals [J].
Atluri, PP ;
Ryan, TA .
JOURNAL OF NEUROSCIENCE, 2006, 26 (08) :2313-2320
[3]   Single-vesicle imaging reveals that synaptic vesicle exocytosis and endocytosis are coupled by a single stochastic mode [J].
Balaji, J. ;
Ryan, T. A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (51) :20576-20581
[4]   OPTICAL ANALYSIS OF SYNAPTIC VESICLE RECYCLING AT THE FROG NEUROMUSCULAR-JUNCTION [J].
BETZ, WJ ;
BEWICK, GS .
SCIENCE, 1992, 255 (5041) :200-203
[5]   Local dendritic activity sets release probability at hippocampal synapses [J].
Branco, Tiago ;
Staras, Kevin ;
Darcy, Kevin J. ;
Goda, Yukiko .
NEURON, 2008, 59 (03) :475-485
[6]   PERSPECTIVES The probability of neurotransmitter release: variability and feedback control at single synapses [J].
Branco, Tiago ;
Staras, Kevin .
NATURE REVIEWS NEUROSCIENCE, 2009, 10 (05) :373-383
[7]   An ultrastructural readout of fluorescence recovery after photobleaching using correlative light and electron microscopy [J].
Darcy, Kevin J. ;
Staras, Kevin ;
Collinson, Lucy M. ;
Goda, Yukiko .
NATURE PROTOCOLS, 2006, 1 (02) :988-994
[8]   Constitutive sharing of recycling synaptic vesicles between presynaptic boutons [J].
Darcy, KJ ;
Staras, K ;
Collinson, LM ;
Goda, Y .
NATURE NEUROSCIENCE, 2006, 9 (03) :315-321
[9]   QUANTAL COMPONENTS OF THE END-PLATE POTENTIAL [J].
DELCASTILLO, J ;
KATZ, B .
JOURNAL OF PHYSIOLOGY-LONDON, 1954, 124 (03) :560-573
[10]   Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure [J].
Denk, W ;
Horstmann, H .
PLOS BIOLOGY, 2004, 2 (11) :1900-1909