Forecasting OPV outdoor performance, degradation rates and diurnal performances via machine learning

被引:0
|
作者
David, Tudur [1 ]
Amorim, Gabriela [2 ]
Bagnis, Diego [2 ]
Bristow, Noel [1 ]
Selbach, Soren [1 ]
Kettle, Jeff [1 ]
机构
[1] Sch Elect Engn, Bangor, Gwynedd, Wales
[2] CSEM, Belo Horizonte, MG, Brazil
关键词
Outdoor monitoring; machine learning; performance prediction; energy yield; lifetime prediction;
D O I
10.1109/pvsc45281.2020.9300859
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Predicting the potential diurnal performance and degradation of organic photovoltaics (OPV) in outdoor conditions is of key interests for users and industrialists. Therefore, machine learning methods are herein employed in order to model and predict the diurnal variation in performance parameters. Subsequently, this allows the expected power output of the modules to be determined. Accurate modelling of the diurnal performance is achieved via a multilayer perceptron algorithm, trained using only the climatic conditions. Furthermore, the degradation rate of the OPV modules is predicted using a separate multivariate regression model. This allows for the main factors that influence the degradation to be found, which in rank order are the 1) Irradiance, 2) Module Temperature 3) Dew point, 4) UV dose, 5) humidity, 6) time, 7) wind speed, in rank order. Using the regression model for degradation, improved understanding of the sources of outdoor degradation is possible.
引用
收藏
页码:412 / 418
页数:7
相关论文
共 50 条
  • [21] Energy generation forecasting: elevating performance with machine and deep learning
    Aristeidis Mystakidis
    Evangelia Ntozi
    Konstantinos Afentoulis
    Paraskevas Koukaras
    Paschalis Gkaidatzis
    Dimosthenis Ioannidis
    Christos Tjortjis
    Dimitrios Tzovaras
    Computing, 2023, 105 : 1623 - 1645
  • [22] Energy generation forecasting: elevating performance with machine and deep learning
    Mystakidis, Aristeidis
    Ntozi, Evangelia
    Afentoulis, Konstantinos
    Koukaras, Paraskevas
    Gkaidatzis, Paschalis
    Ioannidis, Dimosthenis
    Tjortjis, Christos
    Tzovaras, Dimitrios
    COMPUTING, 2023, 105 (08) : 1623 - 1645
  • [23] Machine Learning Algorithms for Forecasting and Categorizing Euro-to-Dollar Exchange Rates
    El Mahjouby, Mohamed
    Bennani, Mohamed Taj
    Lamrini, Mohamed
    Bossoufi, Badre
    Alghamdi, Thamer A. H.
    El Far, Mohamed
    IEEE ACCESS, 2024, 12 : 74211 - 74217
  • [24] Outdoor performance monitoring of perovskite solar cell mini-modules: Diurnal performance, observance of reversible degradation and variation with climatic performance
    Stoichkov, V
    Bristow, N.
    Troughton, J.
    De Rossi, F.
    Watson, T. M.
    Kettle, J.
    SOLAR ENERGY, 2018, 170 : 549 - 556
  • [25] Forecasting realized volatility of the oil future prices via machine learning
    Kim, Myung Jun
    Kim, Byung-June
    Kim, Taeyoon
    Jang, Bong-Gyu
    APPLIED ECONOMICS, 2025,
  • [26] Machine Learning Approach-based Big Data Imputation Methods for Outdoor Air Quality forecasting
    Narasimhan, D.
    Vanitha, M.
    JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, 2023, 82 (03): : 338 - 347
  • [27] Comparative Performance of Machine Learning Ensemble Algorithms for Forecasting Cryptocurrency Prices
    Derbentsev, V
    Babenko, V
    Khrustalev, K.
    Obruch, H.
    Khrustalova, S.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2021, 34 (01): : 140 - 148
  • [28] Performance Comparison of Advanced Machine Learning Techniques for Electricity Price Forecasting
    Jana, Aryyama Kumar
    Paul, Rudrendu Kumar
    2023 NORTH AMERICAN POWER SYMPOSIUM, NAPS, 2023,
  • [29] Solar Energy Forecasting With Performance Optimization Using Machine Learning Techniques
    Murugesan, S.
    Mahasree, M.
    Kavin, F.
    Bharathiraja, N.
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2024,
  • [30] Performance Evaluation of Distributed Machine Learning for Load Forecasting in Smart Grids
    Syed, Dabeeruddin
    Refaat, Shady S.
    Abu-Rub, Haitham
    PROCEEDINGS OF THE 2020 30TH INTERNATIONAL CONFERENCE CYBERNETICS & INFORMATICS (K&I '20), 2020,