TECHNIQUES FOR DETERMINING EQUALITY OF THE MAXIMUM NULLITY AND THE ZERO FORCING NUMBER OF A GRAPH

被引:0
作者
Young, Derek [1 ]
机构
[1] Mt Holyoke Coll, S Hadley, MA 01075 USA
关键词
Maximum nullity; Zero forcing number; Nullity of a graph; Strong Arnold Property; Equitable partition; Equitable decomposition; MINIMUM RANK; PARAMETERS; MATRICES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that the zero forcing number of a graph is an upper bound for the maximum nullity of the graph (see [AIM Minimum Rank - Special Graphs Work Group (F. Barioli, W. Barrett, S. Butler, S. Cioaba, D. Cvetkovie, S. Fallat, C. Godsil, W. Haemers, L. Hogben, R. Mikkelson, S. Narayan, 0. Pryporova, I. Sciriha, W. So, D. Stevanovic, H. van der Hoist, K. Vander Meulen, and A. Wangsness). Linear Algebra Appl., 428(7):1628-1648, 2008]). In this paper, we search for characteristics of a graph that guarantee the maximum nullity of the graph and the zero forcing number of the graph are the same by studying a variety of graph parameters that give lower bounds on the maximum nullity of a graph. In particular, we introduce a new graph parameter which acts as a lower bound for the maximum nullity of the graph. As a result, we show that the Aztec Diamond graph's maximum nullity and zero forcing number are the same. Other graph parameters that are considered are a Colin de Verdiere type parameter and vertex connectivity. We also use matrices, such as a divisor matrix of a graph and an equitable partition of the adjacency matrix of a graph, to establish a lower bound for the nullity of the graph's adjacency matrix.
引用
收藏
页码:295 / 315
页数:21
相关论文
共 50 条
  • [1] THE MAXIMUM NULLITY OF A COMPLETE SUBDIVISION GRAPH IS EQUAL TO ITS ZERO FORCING NUMBER
    Barrett, Wayne
    Butler, Steve
    Catral, Minerva
    Fallat, Shaun M.
    Hall, H. Tracy
    Hogben, Leslie
    Young, Michael
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2014, 27 : 444 - 457
  • [2] POSITIVE SEMIDEFINITE MAXIMUM NULLITY AND ZERO FORCING NUMBER
    Peters, Travis
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2012, 23 : 815 - 830
  • [3] Vertex and edge spread of zero forcing number, maximum nullity, and minimum rank of a graph
    Edholm, Christina J.
    Hogben, Leslie
    My Huynh
    LaGrange, Joshua
    Row, Darren D.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (12) : 4352 - 4372
  • [4] ZERO FORCING NUMBER, MAXIMUM NULLITY, AND PATH COVER NUMBER OF SUBDIVIDED GRAPHS
    Catral, Minerva
    Cepek, Anna
    Hogben, Leslie
    My Huynh
    Lazebnik, Kirill
    Peters, Travis
    Young, Michael
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2012, 23 : 906 - 922
  • [5] Maximum nullity and zero forcing number of graphs with rank at most 4
    Vatandoost, Ebrahim
    Nozari, Katayoun
    COGENT MATHEMATICS & STATISTICS, 2018, 5 (01):
  • [6] MINIMUM RANK, MAXIMUM NULLITY, AND ZERO FORCING NUMBER OF SIMPLE DIGRAPHS
    Berliner, Adam
    Catral, Minerva
    Hogben, Leslie
    My Huynh
    Lied, Kelsey
    Young, Michael
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 762 - 780
  • [7] Families of graphs with maximum nullity equal to zero forcing number
    Alameda, Joseph S.
    Curl, Emelie
    Grez, Armando
    Hogben, Leslie
    Kingston, O'Neill
    Schulte, Alex
    Young, Derek
    Young, Michael
    SPECIAL MATRICES, 2018, 6 (01): : 56 - 67
  • [8] Parameters Related to Tree-Width, Zero Forcing, and Maximum Nullity of a Graph
    Barioli, Francesco
    Barrett, Wayne
    Fallat, Shaun M.
    Hall, H. Tracy
    Hogben, Leslie
    Shader, Bryan
    van den Driessche, P.
    van der Holst, Hein
    JOURNAL OF GRAPH THEORY, 2013, 72 (02) : 146 - 177
  • [9] Maximum nullity and zero forcing number on graphs with maximum degree at most three
    Alishahi, Meysam
    Rezaei-Sani, Elahe
    Sharifi, Elahe
    DISCRETE APPLIED MATHEMATICS, 2020, 284 : 179 - 194
  • [10] Zero forcing and maximum nullity for hypergraphs
    Hogben, Leslie
    DISCRETE APPLIED MATHEMATICS, 2020, 282 : 122 - 135