Polynomial Poisson algebras for two-dimensional classical superintegrable systems and polynomial associative algebras for quantum superintegrable systems

被引:5
作者
Daskaloyannis, C [1 ]
机构
[1] Aristotelian Univ Salonika, Dept Phys, Thessaloniki 54006, Greece
关键词
D O I
10.1023/A:1022896504644
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The integrals of motion of the classical two-dimensional superintegrable systems close in a restrained polynomial Poisson algebra, whose general form is discussed. Each classical superintegrable problem has a quantum counterpart, a quantum superintegrable system. The polynomial Poisson algebra is deformed to a polynomial associative algebra, the finite-dimensional representations of this algebra are calculated by using a deformed parafermion oscillator technique. It is conjectured that the finite-dimensional representations of the polynominal algebra are determined by the energy eigenvalues of the superintegrable system. The calculation of energy eigenvalues is reduced to the solution of algebraic equations, which are universal for a large number of two-dimensional superintegrable systems.
引用
收藏
页码:1209 / 1214
页数:6
相关论文
共 12 条
[1]   DEFORMED OSCILLATOR ALGEBRAS FOR 2-DIMENSIONAL QUANTUM SUPERINTEGRABLE SYSTEMS [J].
BONATSOS, D ;
DASKALOYANNIS, C ;
KOKKOTAS, K .
PHYSICAL REVIEW A, 1994, 50 (05) :3700-3709
[2]   QUANTUM-ALGEBRAIC DESCRIPTION OF QUANTUM SUPERINTEGRABLE SYSTEMS IN 2 DIMENSIONS [J].
BONATSOS, D ;
DASKALOYANNIS, C ;
KOKKOTAS, K .
PHYSICAL REVIEW A, 1993, 48 (05) :R3407-R3410
[3]  
DASKALOYANNIS C, MATHPH0003017
[4]  
DASKALOYANNIS C, 1991, J PHYS A, V24, P789
[5]   ON HIGHER SYMMETRIES IN QUANTUM MECHANICS [J].
FRIS, J ;
MANDROSOV, V ;
SMORODINSKY, YA ;
UHLIR, M ;
WINTERNITZ, P .
PHYSICS LETTERS, 1965, 16 (03) :354-+
[6]  
FRIS J, 1967, SOV J NUCL PHYS, V4, P444
[7]   MUTUAL INTEGRABILITY, QUADRATIC ALGEBRAS, AND DYNAMIC SYMMETRY [J].
GRANOVSKII, YI ;
LUTZENKO, IM ;
ZHEDANOV, AS .
ANNALS OF PHYSICS, 1992, 217 (01) :1-20
[8]   DIRECT METHODS FOR THE SEARCH OF THE 2ND INVARIANT [J].
HIETARINTA, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1987, 147 (02) :87-154
[9]   Superintegrability and associated polynomial solutions: Euclidean space and the sphere in two dimensions [J].
Kalnins, EG ;
Miller, W ;
Pogosyan, GS .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (12) :6439-6467
[10]   A SYSTEMATIC SEARCH FOR NONRELATIVISTIC SYSTEMS WITH DYNAMICAL SYMMETRIES .I. INTEGRALS OF MOTION [J].
MAKAROV, AA ;
SMORODIN.JA ;
VALIEV, K ;
Winternitz, P .
NUOVO CIMENTO A, 1967, 52 (04) :1061-+