Analytic multivariate generating function for random multiplicative cascade processes

被引:37
作者
Greiner, M
Eggers, HC
Lipa, P
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] Univ Stellenbosch, Dept Phys, ZA-7600 Stellenbosch, South Africa
[3] Osterreich Akad Wissensch, Inst Hochenergiephys, A-1050 Vienna, Austria
关键词
D O I
10.1103/PhysRevLett.80.5333
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We have found an analytic expression for the multivariate generating function governing all n-point statistics of random multiplicative cascade processes. The variable appropriate for this generating function is the logarithm of the energy density, In epsilon, rather than epsilon itself. All cumulant statistics become sums over derivatives of "branching generating functions" which are Laplace transforms of the splitting functions and completely determine the cascade process. We show that the branching generating function is a generalization of the multifractal mass exponents. Two simple models from fully developed turbulence illustrate the new formalism.
引用
收藏
页码:5333 / 5336
页数:4
相关论文
共 20 条
[11]   FRACTAL MEASURES AND THEIR SINGULARITIES - THE CHARACTERIZATION OF STRANGE SETS [J].
HALSEY, TC ;
JENSEN, MH ;
KADANOFF, LP ;
PROCACCIA, I ;
SHRAIMAN, BI .
PHYSICAL REVIEW A, 1986, 33 (02) :1141-1151
[12]   FROM STRONG TO WEAK INTERMITTENCY [J].
LIPA, P ;
BUSCHBECK, B .
PHYSICS LETTERS B, 1989, 223 (3-4) :465-469
[13]   THE MULTIFRACTAL NATURE OF TURBULENT ENERGY-DISSIPATION [J].
MENEVEAU, C ;
SREENIVASAN, KR .
JOURNAL OF FLUID MECHANICS, 1991, 224 :429-484
[14]   2-POINT STATISTICS OF MULTIFRACTAL MEASURES [J].
MENEVEAU, C ;
CHHABRA, AB .
PHYSICA A, 1990, 164 (03) :564-574
[15]   SIMPLE MULTIFRACTAL CASCADE MODEL FOR FULLY-DEVELOPED TURBULENCE [J].
MENEVEAU, C ;
SREENIVASAN, KR .
PHYSICAL REVIEW LETTERS, 1987, 59 (13) :1424-1427
[16]   Limitations of random multipliers in describing turbulent energy dissipation [J].
Nelkin, M ;
Stolovitzky, G .
PHYSICAL REVIEW E, 1996, 54 (05) :5100-5106
[17]  
Novikov E. A., 1971, Prikladnaya Matematika i Mekhanika, V35, P266
[18]   Self-similarity and probability distributions of turbulent intermittency [J].
Pedrizzetti, G ;
Novikov, EA ;
Praskovsky, AA .
PHYSICAL REVIEW E, 1996, 53 (01) :475-484
[19]  
Schertzer D, 1985, TURBULENT SHEAR FLOW, V4, P7, DOI DOI 10.1007/978-3-642-69996-2_
[20]   TURBULENT CASCADES [J].
SREENIVASAN, KR ;
STOLOVITZKY, G .
JOURNAL OF STATISTICAL PHYSICS, 1995, 78 (1-2) :311-333