Existence and subharmonicity of solutions for nonsmooth p-Laplacian systems

被引:1
作者
Ning, Yan [1 ,2 ]
Lu, Daowei [2 ]
Mao, Anmin [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
[2] Jining Univ, Dept Math, Qufu 273155, Shandong, Peoples R China
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 10期
关键词
p-Laplacian; locally Lipschitz continuous; nonsmooth saddle point theorem; subharmonic solution; periodic solution; MULTIPLE PERIODIC-SOLUTIONS; HAMILTONIAN-SYSTEMS; DRIVEN;
D O I
10.3934/math.2021636
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study nonlinear periodic systems driven by the vectorial p-Laplacian with a nonsmooth locally Lipschitz potential function. Using variational methods based on nonsmooth critical point theory, some existence of periodic and subharmonic results are obtained, which improve and extend related works.
引用
收藏
页码:10947 / 10963
页数:17
相关论文
共 28 条
[11]   On the existence of multiple periodic solutions for equations driven by the p-Laplacian and with a non-smooth potential [J].
Gasinski, L ;
Papageorgiou, NS .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2003, 46 :229-249
[12]   Positive solutions and multiple solutions for periodic problems driven by scalar p-Laplacian [J].
Hu, Shouchuan ;
Papageorgiou, N. S. .
MATHEMATISCHE NACHRICHTEN, 2006, 279 (12) :1321-1334
[13]   A MIN-MAX PRINCIPLE FOR NON-DIFFERENTIABLE FUNCTIONS WITH A WEAK COMPACTNESS CONDITION [J].
Livrea, Roberto ;
Marano, Salvatore A. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (03) :1019-1029
[14]   Periodic solutions for a class of non-autonomous Hamiltonian systems [J].
Luan, SX ;
Mao, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 61 (08) :1413-1426
[15]   Existence of infinitely many periodic solutions for ordinary p-Laplacian systems [J].
Ma, Shiwang ;
Zhang, Yuxiang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (01) :469-479
[16]   Periodic solutions of an infinite-dimensional Hamiltonian system [J].
Mao, Anmin ;
Luan, Shixia .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 201 (1-2) :800-804
[17]  
Mawhin J., 1989, APPL MATH SCI, V74
[18]  
Motreanu D., 1999, NONCON OPTIM ITS APP, DOI 10.1007/978-1-4615-4064-9
[19]  
Motreanu D., 2003, Nonconvex Optimization and Its Applications, V67
[20]  
Papageorgiou, 2005, MATH ANAL APPL, V8