Existence and subharmonicity of solutions for nonsmooth p-Laplacian systems

被引:1
作者
Ning, Yan [1 ,2 ]
Lu, Daowei [2 ]
Mao, Anmin [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
[2] Jining Univ, Dept Math, Qufu 273155, Shandong, Peoples R China
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 10期
关键词
p-Laplacian; locally Lipschitz continuous; nonsmooth saddle point theorem; subharmonic solution; periodic solution; MULTIPLE PERIODIC-SOLUTIONS; HAMILTONIAN-SYSTEMS; DRIVEN;
D O I
10.3934/math.2021636
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study nonlinear periodic systems driven by the vectorial p-Laplacian with a nonsmooth locally Lipschitz potential function. Using variational methods based on nonsmooth critical point theory, some existence of periodic and subharmonic results are obtained, which improve and extend related works.
引用
收藏
页码:10947 / 10963
页数:17
相关论文
共 28 条
[1]   The existence of periodic solutions of non-autonomous second-order Hamiltonian systems [J].
Aizmahin, Nurbek ;
An, Tianqing .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (14) :4862-4867
[2]   Multiple periodic solutions of Hamiltonian systems with prescribed energy [J].
An, Tianqing .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 236 (01) :116-132
[3]   Subharmonic solutions of Hamiltonian systems and the Maslov-type index theory [J].
An, Tianqing .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 331 (01) :701-711
[4]  
[Anonymous], 2000, KODAI MATH J
[5]   Some remarks on critical point theory for locally Lipschitz functions [J].
Barletta, G ;
Marano, SA .
GLASGOW MATHEMATICAL JOURNAL, 2003, 45 :131-141
[6]   A NONLINEAR EIGENVALUE PROBLEM FOR THE PERIODIC SCALAR p-LAPLACIAN [J].
Barletta, Giuseppina ;
Livera, Roberto ;
Papageorgiou, Nikolaos S. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (03) :1075-1086
[7]   VARIATIONAL-METHODS FOR NON-DIFFERENTIABLE FUNCTIONALS AND THEIR APPLICATIONS TO PARTIAL-DIFFERENTIAL EQUATIONS [J].
CHANG, KC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 80 (01) :102-129
[8]  
[Chen Lizhen 陈丽珍], 2015, [数学进展, Advances in Mathematics (China)], V44, P421
[9]  
Clarke FH, 1990, Optimization and Nonsmooth Analysis
[10]  
Denkowski Z, 2003, INTRO NONLINEAR ANAL