Stress Ratio and Notch Effects on the Very High Cycle Fatigue Properties of a Near-Alpha Titanium Alloy

被引:18
|
作者
Yang, Kun [1 ,2 ]
Zhong, Bin [3 ]
Huang, Qi [4 ]
He, Chao [1 ,5 ]
Huang, Zhi-Yong [6 ]
Wang, Qingyuan [1 ,2 ,5 ]
Liu, Yong-Jie [1 ,2 ]
机构
[1] Sichuan Univ, Coll Architecture & Environm, Failure Mech & Engn Disaster Prevent & Mitigat Ke, Chengdu 610065, Sichuan, Peoples R China
[2] Sichuan Univ, Key Lab Deep Underground Sci & Engn, Minist Educ, Chengdu 610225, Sichuan, Peoples R China
[3] Aviat Ind China, Beijing Inst Aeronaut Mat, Beijing 100095, Peoples R China
[4] Sichuan Coll Architectural Technol, Dept Civil Engn, Deyang 618000, Peoples R China
[5] Chengdu Univ, Sch Architecture & Civil Engn, Chengdu 610106, Sichuan, Peoples R China
[6] Sichuan Univ, Sch Aeronaut & Astronaut, Chengdu 610064, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
VHCF; multi-point surface crack initiation; notch; mean stress; fatigue strength prediction; CRACK-INITIATION; GIGACYCLE FATIGUE; TI-6AL-4V ALLOY; LIFE PREDICTION; MEAN STRESS; BEHAVIOR; STEEL; REGIME; MECHANISMS; STRENGTH;
D O I
10.3390/ma11091778
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ultrasonic fatigue tests up to 10(10) cycles were performed on a turbine engine titanium alloy (Ti-8Al-1Mo-1V) at the stress ratio (R) of -1 with smooth specimens and at R = -1, 0.1 and 0.5 with notched specimens. As a result, with increase of fatigue life, the source of reduced fatigue life caused by multi-point surface crack initiation changes from crack propagation stage to crack initiation stage in the high cycle fatigue regime. Notch effect further promotes the degeneration of high cycle and very high cycle fatigue strength at R > -1. The bilinear model, extended from the Goodman method, can better estimate the mean stress sensitivity of this titanium alloy. The fatigue mean stress sensitivity and fatigue-creep mean stress sensitivity of this material increased with the increase of fatigue life. The new model, based on the Murakami model, can provide more appropriate predictions for notch fatigue strength.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] High temperature fatigue behavior of a near-alpha titanium alloy
    Zhao, Z.
    Zhou, R.
    Cai, J.
    Chen, B.
    INTERNATIONAL JOURNAL OF FATIGUE, 2022, 161
  • [2] The stress effect on very high cycle fatigue and fracture of near β titanium alloy
    Naydenkin, E. V.
    Ratochka, I. V.
    Mishin, I. P.
    Lykova, O. N.
    Zabudchenko, O. V.
    INTERNATIONAL JOURNAL OF FATIGUE, 2024, 182
  • [3] Microstructural effects on fatigue crack initiation mechanisms in a near-alpha titanium alloy
    Liu, Conghui
    Xu, Xu
    Sun, Tianzhu
    Thomas, Rhys
    da Fonseca, Joao Quinta
    Preuss, Michael
    ACTA MATERIALIA, 2023, 253
  • [4] Very High Cycle Fatigue Failure of Near β Titanium Alloy
    E. V. Naydenkin
    A. P. Soldatenkov
    I. P. Mishin
    V. A. Oborin
    A. A. Shanyavskiy
    Physical Mesomechanics, 2021, 24 : 326 - 334
  • [5] Very High Cycle Fatigue Failure of Near β Titanium Alloy
    Naydenkin, E., V
    Soldatenkov, A. P.
    Mishin, I. P.
    Oborin, V. A.
    Shanyavskiy, A. A.
    PHYSICAL MESOMECHANICS, 2021, 24 (03) : 326 - 334
  • [6] TENSION AND TORSION FATIGUE TESTING OF A NEAR-ALPHA TITANIUM-ALLOY
    BACHE, MR
    EVANS, WJ
    INTERNATIONAL JOURNAL OF FATIGUE, 1992, 14 (05) : 331 - 337
  • [7] Influence of microstructure on fretting fatigue behavior of a near-alpha titanium alloy
    Satoh, T
    FRETTING FATIGUE: CURRENT TECHNOLOGY AND PRACTICES, 2000, 1367 : 295 - 307
  • [8] Effects of hydrogen on fatigue behavior of near-alpha titanium alloys
    Sinha, V.
    Schwarz, R. B.
    Mills, M. J.
    Williams, J. C.
    SCRIPTA MATERIALIA, 2018, 153 : 81 - 85
  • [9] Notch effects on high-cycle fatigue properties of titanium alloy at cryogenic temperatures
    Yuri, T
    Ono, Y
    Ogata, T
    ADVANCES IN CRYOGENIC ENGINEERING, VOLS 50A AND B, 2004, 711 : 106 - 113
  • [10] High cycle and very high cycle fatigue of TC17 titanium alloy: Stress ratio effect and fatigue strength modeling
    Li, Gen
    Ke, Lei
    Ren, Xuechong
    Sun, Chengqi
    INTERNATIONAL JOURNAL OF FATIGUE, 2023, 166