THE NAVIER-STOKES-VLASOV-FOKKER-PLANCK SYSTEM NEAR EQUILIBRIUM

被引:74
|
作者
Goudon, Thierry [1 ]
He, Lingbing [2 ]
Moussa, Ayman [3 ]
Zhang, Ping [4 ]
机构
[1] INRIA Res Ctr Lille Nord Europe, Project Team SIMPAF, F-59658 Villeneuve Dascq, France
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[3] ENS Cachan, CMLA, PRES UniverSud, CNRS, F-94230 Cachan, France
[4] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
基金
中国博士后科学基金;
关键词
fluid-particle flows; hypocoercivity; hypoelliptic operator; ASYMPTOTIC ANALYSIS; CLASSICAL-SOLUTIONS; HYDRODYNAMIC LIMIT; GLOBAL EQUILIBRIUM; SMOOTH SOLUTION; PARTICLES; REGULARITY; EQUATIONS; TREND; MODEL;
D O I
10.1137/090776755
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with a system that couples the incompressible Navier-Stokes equations to the Vlasov-Fokker-Planck equation. Such a system arises in the modeling of sprays, where a dense phase interacts with a disperse phase. The coupling arises from the Stokes drag force exerted by a phase on the other. We study the global-in-time existence of classical solutions for data close to an equilibrium. We investigate further regularity properties of the solutions as well as their long time behavior. The proofs use energy estimates and the hypocoercive/hypoelliptic structure of the system.
引用
收藏
页码:2177 / 2202
页数:26
相关论文
共 50 条
  • [31] ON THE VLASOV-POISSON-FOKKER-PLANCK EQUATION NEAR MAXWELLIAN
    Hwang, Hyung Ju
    Jang, Juhi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (03): : 681 - 691
  • [32] THE GLOBAL CLASSICAL SOLUTION OF THE VLASOV-MAXWELL-FOKKER-PLANCK SYSTEM NEAR MAXWELLIAN
    Chae, Myeongju
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (05): : 1007 - 1025
  • [33] On Diffusive 2D Fokker–Planck–Navier–Stokes Systems
    Joonhyun La
    Archive for Rational Mechanics and Analysis, 2020, 235 : 1531 - 1588
  • [34] On the Nernst–Planck–Navier–Stokes system
    Peter Constantin
    Mihaela Ignatova
    Archive for Rational Mechanics and Analysis, 2019, 232 : 1379 - 1428
  • [35] Results on local well-posedness for the incompressible Navier-Stokes-Fokker-Planck system
    Li, Yatao
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (02):
  • [36] Global Cauchy problem for the Vlasov-Riesz-Fokker-Planck system near the global Maxwellian
    Choi, Young-Pil
    Jeong, In-Jee
    Kang, Kyungkeun
    JOURNAL OF EVOLUTION EQUATIONS, 2024, 24 (03)
  • [37] FOKKER-PLANCK-VLASOV EQUATION
    HEBEKER, FK
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1980, 60 (7BIS): : T253 - T254
  • [38] Parabolic limit and stability of the Vlasov-Fokker-Planck system
    Poupaud, F
    Soler, J
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2000, 10 (07): : 1027 - 1045
  • [39] DIFFUSION LIMIT OF THE VLASOV-POISSON-FOKKER-PLANCK SYSTEM
    El Ghani, Najoua
    Masmoudi, Nader
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2010, 8 (02) : 463 - 479
  • [40] Steady states of the Vlasov-Poisson-Fokker-Planck system
    Glassey, R
    Schaeffer, J
    Zheng, YX
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 202 (03) : 1058 - 1075