Developing image analysis methods for digital pathology

被引:34
作者
Bankhead, Peter [1 ,2 ,3 ]
机构
[1] Univ Edinburgh, Inst Genet & Canc, Edinburgh Pathol, Edinburgh, Midlothian, Scotland
[2] Univ Edinburgh, Ctr Genom & Expt Med, Inst Genet & Canc, Edinburgh, Midlothian, Scotland
[3] Univ Edinburgh, Canc Res UK Edinburgh Ctr, Inst Genet & Canc, Edinburgh, Midlothian, Scotland
关键词
digital pathology; computational pathology; image processing; image analysis; open science; software; ESTROGEN-RECEPTOR STATUS; COMPUTER CODE; SEGMENTATION; PLATFORM; HISTOLOGY; PROGRAMS; ARCHIVE;
D O I
10.1002/path.5921
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The potential to use quantitative image analysis and artificial intelligence is one of the driving forces behind digital pathology. However, despite novel image analysis methods for pathology being described across many publications, few become widely adopted and many are not applied in more than a single study. The explanation is often straightforward: software implementing the method is simply not available, or is too complex, incomplete, or dataset-dependent for others to use. The result is a disconnect between what seems already possible in digital pathology based upon the literature, and what actually is possible for anyone wishing to apply it using currently available software. This review begins by introducing the main approaches and techniques involved in analysing pathology images. I then examine the practical challenges inherent in taking algorithms beyond proof-of-concept, from both a user and developer perspective. I describe the need for a collaborative and multidisciplinary approach to developing and validating meaningful new algorithms, and argue that openness, implementation, and usability deserve more attention among digital pathology researchers. The review ends with a discussion about how digital pathology could benefit from interacting with and learning from the wider bioimage analysis community, particularly with regard to sharing data, software, and ideas. (C) 2022 The Author. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
引用
收藏
页码:391 / 402
页数:12
相关论文
共 107 条
[1]   An open source automated tumor infiltrating lymphocyte algorithm for prognosis in melanoma [J].
Acs, Balazs ;
Ahmed, Fahad Shabbir ;
Gupta, Swati ;
Wong, Pok Fai ;
Gartrell, Robyn D. ;
Pradhan, Jaya Sarin ;
Rizk, Emanuelle M. ;
Rothberg, Bonnie Gould ;
Saenger, Yvonne M. ;
Rimm, David L. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[2]   Ki67 reproducibility using digital image analysis: an inter-platform and inter-operator study [J].
Acs, Balazs ;
Pelekanou, Vasiliki ;
Bai, Yalai ;
Martinez-Morilla, Sandra ;
Toki, Maria ;
Leung, Samuel C. Y. ;
Nielsen, Torsten O. ;
Rimm, David L. .
LABORATORY INVESTIGATION, 2019, 99 (01) :107-117
[3]  
Alston JM., 2021, Bull. Ecol. Soc. Am., V102, P1, DOI DOI 10.1002/BES2.1801
[4]   A High-Performance System for Robust Stain Normalization of Whole-Slide Images in Histopathology [J].
Anghel, Andreea ;
Stanisavljevic, Milos ;
Andani, Sonali ;
Papandreou, Nikolaos ;
Rueschoff, Jan Hendrick ;
Wild, Peter ;
Gabrani, Maria ;
Pozidis, Haralampos .
FRONTIERS IN MEDICINE, 2019, 6
[5]   Whole-Slide Image Analysis of Human Pancreas Samples to Elucidate the Immunopathogenesis of Type 1 Diabetes Using the QuPath Software [J].
Apaolaza, Paola S. ;
Petropoulou, Peristera-Ioanna ;
Rodriguez-Calvo, Teresa .
FRONTIERS IN MOLECULAR BIOSCIENCES, 2021, 8
[6]   BACH: Grand challenge on breast cancer histology images [J].
Aresta, Guilherme ;
Araujo, Teresa ;
Kwok, Scotty ;
Chennamsetty, Sai Saketh ;
Safwan, Mohammed ;
Alex, Varghese ;
Marami, Bahram ;
Prastawa, Marcel ;
Chan, Monica ;
Donovan, Michael ;
Fernandez, Gerardo ;
Zeineh, Jack ;
Kohl, Matthias ;
Walz, Christoph ;
Ludwig, Florian ;
Braunewell, Stefan ;
Baust, Maximilian ;
Quoc Dang Vu ;
Minh Nguyen Nhat To ;
Kim, Eal ;
Kwak, Jin Tae ;
Galal, Sameh ;
Sanchez-Freire, Veronica ;
Brancati, Nadia ;
Frucci, Maria ;
Riccio, Daniel ;
Wang, Yaqi ;
Sun, Lingling ;
Ma, Kaiqiang ;
Fang, Jiannan ;
Kone, Ismael ;
Boulmane, Lahsen ;
Campilho, Aurelio ;
Eloy, Catarina ;
Polonia, Antonio ;
Aguiar, Paulo .
MEDICAL IMAGE ANALYSIS, 2019, 56 :122-139
[7]   From Detection of Individual Metastases to Classification of Lymph Node Status at the Patient Level: The CAMELYON17 Challenge [J].
Bandi, Peter ;
Geessink, Oscar ;
Manson, Quirine ;
van Dijk, Marcory ;
Balkenhol, Maschenka ;
Hermsen, Meyke ;
Bejnordi, Babak Ehteshami ;
Lee, Byungjae ;
Paeng, Kyunghyun ;
Zhong, Aoxiao ;
Li, Quanzheng ;
Zanjani, Farhad Ghazvinian ;
Zinger, Svitlana ;
Fukuta, Keisuke ;
Komura, Daisuke ;
Ovtcharov, Vlado ;
Cheng, Shenghua ;
Zeng, Shaoqun ;
Thagaard, Jeppe ;
Dahl, Anders B. ;
Lin, Huangjing ;
Chen, Hao ;
Jacobsson, Ludwig ;
Hedlund, Martin ;
Cetin, Melih ;
Halici, Eren ;
Jackson, Hunter ;
Chen, Richard ;
Both, Fabian ;
Franke, Joerg ;
Kusters-Vandevelde, Heidi ;
Vreuls, Willem ;
Bult, Peter ;
van Ginneken, Bram ;
van der Laak, Jeroen ;
Litjens, Geert .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (02) :550-560
[8]   Integrated tumor identification and automated scoring minimizes pathologist involvement and provides new insights to key biomarkers in breast cancer [J].
Bankhead, Peter ;
Fernandez, Jose A. ;
McArt, Darragh G. ;
Boyle, David P. ;
Li, Gerald ;
Loughrey, Maurice B. ;
Irwin, Gareth W. ;
Harkin, D. Paul ;
James, Jacqueline A. ;
McQuaid, Stephen ;
Salto-Tellez, Manuel ;
Hamilton, Peter W. .
LABORATORY INVESTIGATION, 2018, 98 (01) :15-26
[9]   QuPath: Open source software for digital pathology image analysis [J].
Bankhead, Peter ;
Loughrey, Maurice B. ;
Fernandez, Jose A. ;
Dombrowski, Yvonne ;
Mcart, Darragh G. ;
Dunne, Philip D. ;
McQuaid, Stephen ;
Gray, Ronan T. ;
Murray, Liam J. ;
Coleman, Helen G. ;
James, Jacqueline A. ;
Salto-Tellez, Manuel ;
Hamilton, Peter W. .
SCIENTIFIC REPORTS, 2017, 7
[10]   Publish your computer code: it is good enough [J].
Barnes, Nick .
NATURE, 2010, 467 (7317) :753-753