Comparison inequalities for heat semigroups and heat kernels on metric measure spaces

被引:27
|
作者
Grigor'yan, Alexander [2 ]
Hu, Jiaxin [1 ]
Lau, Ka-Sing [3 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
[3] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
关键词
Dirichlet form; Heat semigroup; Heat kernel; Maximum principle; BROWNIAN-MOTION;
D O I
10.1016/j.jfa.2010.07.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a certain inequality for a subsolution of the heat equation associated with a regular Dirichlet form. As a consequence of this inequality, we obtain various interesting comparison inequalities for heat semigroups and heat kernels, which can be used for obtaining pointwise estimates of heat kernels. As an example of application, we present a new method of deducing sub-Gaussian upper bounds of the heat kernel from on-diagonal bounds and tail estimates. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2613 / 2641
页数:29
相关论文
共 50 条
  • [1] Heat Kernels on Metric Spaces with Doubling Measure
    Grigor'yan, Alexander
    Hu, Jiaxin
    Lau, Ka-Sing
    FRACTAL GEOMETRY AND STOCHASTICS IV, 2009, 61 : 3 - +
  • [2] Heat Kernels and Green Functions on Metric Measure Spaces
    Grigor'yan, Alexander
    Hu, Jiaxin
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2014, 66 (03): : 641 - 699
  • [3] TWO-SIDED ESTIMATES OF HEAT KERNELS ON METRIC MEASURE SPACES
    Grigor'yan, Alexander
    Telcs, Andras
    ANNALS OF PROBABILITY, 2012, 40 (03) : 1212 - 1284
  • [4] Diffusion processes and heat kernels on metric spaces
    Sturm, KT
    ANNALS OF PROBABILITY, 1998, 26 (01) : 1 - 55
  • [5] The Li-Yau inequality and heat kernels on metric measure spaces
    Jiang, Renjin
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (01): : 29 - 57
  • [6] Generalized capacity, Harnack inequality and heat kernels of Dirichlet forms on metric measure spaces
    Grigor'yan, Alexander
    Hu, Jiaxin
    Lau, Ka-Sing
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2015, 67 (04) : 1485 - 1549
  • [7] Characterizations of Sets of Finite Perimeter Using Heat Kernels in Metric Spaces
    Niko Marola
    Michele Miranda
    Nageswari Shanmugalingam
    Potential Analysis, 2016, 45 : 609 - 633
  • [8] Characterizations of Sets of Finite Perimeter Using Heat Kernels in Metric Spaces
    Marola, Niko
    Miranda, Michele, Jr.
    Shanmugalingam, Nageswari
    POTENTIAL ANALYSIS, 2016, 45 (04) : 609 - 633
  • [9] Lower estimates of heat kernels for non-local Dirichlet forms on metric measure spaces
    Grigor'yan, Alexander
    Hu, Eryan
    Hu, Jiaxin
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (08) : 3311 - 3346
  • [10] Analysis on Ultra-Metric Spaces via Heat Kernels
    Grigor'yan, Alexander
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2023, 15 (03) : 204 - 242