Comparison inequalities for heat semigroups and heat kernels on metric measure spaces

被引:27
作者
Grigor'yan, Alexander [2 ]
Hu, Jiaxin [1 ]
Lau, Ka-Sing [3 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
[3] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
关键词
Dirichlet form; Heat semigroup; Heat kernel; Maximum principle; BROWNIAN-MOTION;
D O I
10.1016/j.jfa.2010.07.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a certain inequality for a subsolution of the heat equation associated with a regular Dirichlet form. As a consequence of this inequality, we obtain various interesting comparison inequalities for heat semigroups and heat kernels, which can be used for obtaining pointwise estimates of heat kernels. As an example of application, we present a new method of deducing sub-Gaussian upper bounds of the heat kernel from on-diagonal bounds and tail estimates. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2613 / 2641
页数:29
相关论文
共 13 条
[1]  
Barlow M., 1998, Lecture Notes in Math., V1690, P1, DOI [10.1007/BFb0092537, DOI 10.1007/BFB0092537]
[2]   Brownian motion and harmonic analysis on Sierpinski carpets [J].
Barlow, MT ;
Bass, RF .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1999, 51 (04) :673-744
[3]   BROWNIAN-MOTION ON THE SIERPINSKI GASKET [J].
BARLOW, MT ;
PERKINS, EA .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 79 (04) :543-623
[4]   Off-diagonal upper estimates for the heat kernel of the Dirichlet forms on metric spaces [J].
Grigor'yan, Alexander ;
Hu, Jiaxin .
INVENTIONES MATHEMATICAE, 2008, 174 (01) :81-126
[5]  
GRIGORYAN A, 2009, P C FRACT GEOM GREIF, V4, P3
[6]  
GRIGORYAN A, 2009, ANN I FOURIER GRENOB, V59
[7]  
GRIGORYAN A, 2008, UPPER BOUNDS HEAT KE
[8]   Transition density estimates for diffusion processes on post critically finite self-similar fractals [J].
Hambly, BM ;
Kumagai, T .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1999, 78 :431-458
[9]   On the relation between elliptic and parabolic Harnack inequalities [J].
Hebisch, W ;
Saloff-Coste, L .
ANNALES DE L INSTITUT FOURIER, 2001, 51 (05) :1437-+
[10]   Local Nash inequality and inhomogeneity of heat kernels [J].
Kigami, J .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2004, 89 :525-544