Advances in anisotropic artificial impedance surfaces

被引:0
|
作者
Sievenpiper, D. [1 ]
Quarfoth, R. [2 ]
Lee, J. [1 ]
机构
[1] Univ Calif San Diego, ECE Dept, 9500 Gilman Dr, La Jolla, CA 92093 USA
[2] HRL Labs, Appl Electromagnet Lab, Malibu, CA USA
来源
9TH INTERNATIONAL CONGRESS ON ADVANCED ELECTROMAGNETIC MATERIALS IN MICROWAVES AND OPTICS (METAMATERIALS 2015) | 2015年
关键词
WAVE-GUIDES;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The interaction between an object and electromagnetic waves can be described in terms of its surface impedance. By introducing large anisotropy into artificial impedance surfaces, it is possible to achieve a high degree of control over this interaction that is not possible with isotropic surfaces. These surfaces can be used to create nonscattering surface waveguides, beam shifting structures, and to control scattering from edges and other features. With new patterning techniques we can obtain arbitrary and smoothly varying impedance functions for even greater control.
引用
收藏
页码:493 / 495
页数:3
相关论文
共 50 条
  • [31] Parallelized multilevel fast multipole algorithm for scattering by objects with anisotropic impedance surfaces
    Zhang, Kedi
    Jin, Jian-Ming
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2015, 28 (01) : 107 - 119
  • [32] A Highly-confined Dielectric Waveguide Enabled by Conformal Anisotropic Impedance Surfaces
    Jiang, Zhi Hao
    Kang, Lei
    Yue, Taiwei
    Werner, Douglas H.
    2017 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING, 2017, : 1493 - 1494
  • [33] Towards Carbon Based Artificial Impedance Surfaces for Conformal Aerospace Applications
    Todd, A.
    Baum, T. C.
    Nicholson, K. J.
    Ziolkowski, R. W.
    Ghorbani, K.
    2018 48TH EUROPEAN MICROWAVE CONFERENCE (EUMC), 2018, : 1017 - 1020
  • [34] Recent advances in research on biointerfaces: From cell surfaces to artificial interfaces
    Hori, Katsutoshi
    Yoshimoto, Shogo
    Yoshino, Tomoko
    Zako, Tamotsu
    Hirao, Gen
    Fujita, Satoshi
    Nakamura, Chikashi
    Yamagishi, Ayana
    Kamiya, Noriho
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2022, 133 (03) : 195 - 207
  • [35] Reconfigurable Artificial Surfaces Based on Impedance Loaded Wires Close to a Ground Plane
    Liberal, Inigo
    Nefedov, Igor S.
    Ederra, Inigo
    Gonzalo, Ramon
    Tretyakov, Sergei A.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2012, 60 (04) : 1921 - 1930
  • [36] Comparisons of Scalar and Tensor Circularly-Polarized Holographic Artificial Impedance Surfaces
    Yao, Ming
    Mei, Peng
    Pedersen, Gert Frolund
    Zhang, Shuai
    2022 16TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2022,
  • [37] Accurate Analytical Anisotropic Model of Artificial Surfaces Comprising Conducting Strip Arrays
    Huang, Ruifeng
    Liu, Lie
    Kong, Ling Bing
    ASIA-PACIFIC MICROWAVE CONFERENCE 2011, 2011, : 919 - 922
  • [38] Dual-Band Reflection-Type Circular Polarizers Based on Anisotropic Impedance Surfaces
    Fartookzadeh, M.
    Armaki, S. H. Mohseni
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2016, 64 (02) : 826 - U596
  • [39] Efficient simple analytic model of artificial impedance surfaces based on resonance microstrip grids
    Mel'chakova, I. V.
    Simovskii, K. R.
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2008, 53 (08) : 874 - 882
  • [40] 2d-FDTD modeling of wire antennas near artificial impedance surfaces
    Kärkkäinen, M
    Tretyakov, S
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2002, 34 (01) : 38 - 40