Fast Li Plating Behavior Probed by X-ray Computed Tomography

被引:28
作者
Pan, Hongyi [1 ,2 ]
Fu, Tianyu [3 ]
Zan, Guibin [4 ]
Chen, Rusong [1 ,5 ]
Yao, Chunxia [3 ]
Li, Quan [1 ,2 ]
Pianetta, Piero [4 ]
Zhang, Kai [3 ]
Liu, Yijin [4 ]
Yu, Xiqian [1 ,2 ]
Li, Hong [1 ,5 ]
机构
[1] Chinese Acad Sci, Beijing Adv Innovat Ctr Mat Genome Engn, Inst Phys, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Phys, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing 100049, Peoples R China
[4] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA
[5] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
lithium metal battery; lithium metal anode; X-ray computed tomography; lithium plating; dendrite; RECHARGEABLE BATTERIES; LITHIUM; GROWTH; ELECTRODEPOSITION; MICROSCOPY; DEPOSITION; INTERFACE; DENDRITES; EVOLUTION;
D O I
10.1021/acs.nanolett.1c01389
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Uneven lithium plating/stripping is an essential issue that inhibits stable cycling of a lithium metal anode and thus hinders its practical applications. The investigation of this process is challenging because it is difficult to observe lithium in an operating device. Here, we demonstrate that the microscopic lithium plating behavior can be observed in situ in a close-to-practical cell setup using X-ray computed tomography. The results reveal the formation of porous structure and its progressive evolution in space over the charging process with a large current. The elaborated analysis indicates that the microstructure of deposited lithium makes a significant impact on the subsequent lithium plating, and the impact of structural inhomogeneity, further exaggerated by the large-current charging, can lead to severely uneven lithium plating and eventually cell failure. Therefore, a codesign strategy involving delicate controls of microstructure and electrochemical conditions could be a necessity for the next-generation battery with lithium metal anode.
引用
收藏
页码:5254 / 5261
页数:8
相关论文
共 41 条
  • [1] Transition of lithium growth mechanisms in liquid electrolytes
    Bai, Peng
    Li, Ju
    Brushett, Fikile R.
    Bazant, Martin Z.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) : 3221 - 3229
  • [2] The Influence of Cycling, Temperature, and Electrode Gapping on the Safety of Prismatic Lithium-Ion Batteries
    Cai, Zhuhua
    Mendoza, Sergio
    Goodman, Johanna
    McGann, John
    Han, Binghong
    Sanchez, Hernan
    Spray, Ryan
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (16)
  • [3] Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes
    Chen, Kuan-Hung
    Wood, Kevin N.
    Kazyak, Eric
    LePage, William S.
    Davis, Andrew L.
    Sanchez, Adrian J.
    Dasgupta, Neil P.
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (23) : 11671 - 11681
  • [4] Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
    Cheng, Xin-Bing
    Zhang, Rui
    Zhao, Chen-Zi
    Zhang, Qiang
    [J]. CHEMICAL REVIEWS, 2017, 117 (15) : 10403 - 10473
  • [5] Lithium Metal-Copper Vanadium Oxide Battery with a Block Copolymer Electrolyte
    Devaux, Didier
    Wang, Xiaoya
    Thelen, Jacob L.
    Parkinson, Dilworth Y.
    Cabana, Jordi
    Wang, Feng
    Balsara, Nitash P.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (10) : A2447 - A2455
  • [6] Nanoscale Mapping of Extrinsic Interfaces in Hybrid Solid Electrolytes
    Dixit, Marm B.
    Zaman, Wahid
    Hortance, Nicholas
    Vujic, Stella
    Harkey, Brice
    Shen, Fengyu
    Tsai, Wan-Yu
    De Andrade, Vincent
    Chen, X. Chelsea
    Balke, Nina
    Hatzell, Kelsey B.
    [J]. JOULE, 2020, 4 (01) : 207 - 221
  • [7] Regulating Li deposition at artificial solid electrolyte interphases
    Fan, Lei
    Zhuang, Houlong L.
    Gao, Lina
    Lu, Yingying
    Archer, Lynden A.
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (07) : 3483 - 3492
  • [8] Quantifying inactive lithium in lithium metal batteries
    Fang, Chengcheng
    Li, Jinxing
    Zhang, Minghao
    Zhang, Yihui
    Yang, Fan
    Lee, Jungwoo Z.
    Lee, Min-Han
    Alvarado, Judith
    Schroeder, Marshall A.
    Yang, Yangyuchen
    Lu, Bingyu
    Williams, Nicholas
    Ceja, Miguel
    Yang, Li
    Cai, Mei
    Gu, Jing
    Xu, Kang
    Wang, Xuefeng
    Meng, Ying Shirley
    [J]. NATURE, 2019, 572 (7770) : 511 - +
  • [9] Internal Morphologies of Cycled Li-Metal Electrodes Investigated by Nano-Scale Resolution X-ray Computed Tomography
    Frisco, Sarah
    Liu, Danny X.
    Kumar, Arjun
    Whitacre, Jay F.
    Love, Corey T.
    Swider-Lyons, Karen E.
    Litster, Shawn
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (22) : 18748 - 18757
  • [10] Advanced Lithium Metal-Carbon Nanotube Composite Anode for High-Performance Lithium-Oxygen Batteries
    Guo, Feng
    Kang, Tuo
    Liu, Zhenjie
    Tong, Bo
    Guo, Limin
    Wang, Yalong
    Liu, Chenghao
    Chen, Xi
    Zhao, Yanfei
    Shen, Yanbin
    Lu, Wei
    Chen, Liwei
    Peng, Zhangquan
    [J]. NANO LETTERS, 2019, 19 (09) : 6377 - 6384