VARIABLE SELECTION FOR MULTIPLE FUNCTION-ON-FUNCTION LINEAR REGRESSION

被引:9
作者
Cai, Xiong [1 ]
Xue, Liugen [2 ]
Cao, Jiguo [3 ]
机构
[1] Nanjing Audit Univ, Sch Stat & Data Sci, Nanjing 211815, Peoples R China
[2] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
[3] Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC V5A 1S6, Canada
基金
北京市自然科学基金; 加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Functional data analysis; functional principal component analysis; group SCAD; selection consistency; regularization; NONCONCAVE PENALIZED LIKELIHOOD; SHRINKAGE ESTIMATION; MODEL;
D O I
10.5705/ss.202020.0473
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a variable selection procedure for function-on-function linear models with multiple functional predictors, using the functional principal component analysis (FPCA)-based estimation method with the group smoothly clipped absolute deviation regularization. This approach enables us to select significant functional predictors and estimate the bivariate functional coefficients simultaneously. A data-driven procedure is provided for choosing the tuning parameters of the proposed method to achieve high efficiency. We construct FPCA-based estimators for the bivariate functional coefficients using the proposed regularization method. Under some mild conditions, we establish the estimation and selection consistencies of the proposed procedure. Simulation studies are carried out to illustrate the finite-sample performance of the proposed method. The results show that our method is highly effective in identifying the relevant functional predictors and in estimating the bivariate functional coefficients. Furthermore, the proposed method is demonstrated in a real-data example by investigating the association between ocean temperature and several water variables.
引用
收藏
页码:1435 / 1465
页数:31
相关论文
共 39 条
  • [11] A Selective Review of Group Selection in High-Dimensional Models
    Huang, Jian
    Breheny, Patrick
    Ma, Shuangge
    [J]. STATISTICAL SCIENCE, 2012, 27 (04) : 481 - 499
  • [12] Robust shrinkage estimation and selection for functional multiple linear model through LAD loss
    Huang, Lele
    Zhao, Junlong
    Wang, Huiwen
    Wang, Siyang
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 103 : 384 - 400
  • [13] PCA-based estimation for functional linear regression with functional responses
    Imaizumi, Masaaki
    Kato, Kengo
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 163 : 15 - 36
  • [14] Partially functional linear regression in high dimensions
    Kong, Dehan
    Xue, Kaijie
    Yao, Fang
    Zhang, Hao H.
    [J]. BIOMETRIKA, 2016, 103 (01) : 147 - 159
  • [15] SHRINKAGE ESTIMATION AND SELECTION FOR MULTIPLE FUNCTIONAL REGRESSION
    Lian, Heng
    [J]. STATISTICA SINICA, 2013, 23 (01) : 51 - 74
  • [16] Locally Sparse Estimator for Functional Linear Regression Models
    Lin, Zhenhua
    Cao, Jiguo
    Wang, Liangliang
    Wang, Haonan
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (02) : 306 - 318
  • [17] Interpretable Functional Principal Component Analysis
    Lin, Zhenhua
    Wang, Liangliang
    Cao, Jiguo
    [J]. BIOMETRICS, 2016, 72 (03) : 846 - 854
  • [18] Estimating functional linear mixed-effects regression models
    Liu, Baisen
    Wang, Liangliang
    Cao, Jiguo
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 106 : 153 - 164
  • [19] Functional wavelet regression for linear function-on-function models
    Luo, Ruiyan
    Qi, Xin
    Wang, Yanhong
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (02): : 3179 - 3216
  • [20] Function-on-Function Linear Regression by Signal Compression
    Luo, Ruiyan
    Qi, Xin
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) : 690 - 705