Uncertain Inference Using Ordinal Classification in Deep Networks for Acoustic Localization

被引:2
作者
Whitaker, Steven [1 ]
Dekraker, Zach [1 ]
Barnard, Andrew [1 ]
Havens, Timothy C. [1 ]
机构
[1] Michigan Technol Univ, Houghton, MI 49931 USA
来源
2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2021年
关键词
underwater acoustics; localization; machine learning; LSTMs; ordinal classification;
D O I
10.1109/IJCNN52387.2021.9533605
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Highly-reverberate underwater environments pose challenges for conventional localization techniques due to the highly non-linear nature of reflective surfaces, multi-path, and scattering fields. In this paper, we compare different machine learning methods for passive localization and tracking of single, non-stationary, underwater acoustic sources using multiple underwater acoustic vector sensors. We incorporate ordinal classification for localization in a novel approach to acoustic localization and compare the results with other standard methods. Real-world experiments demonstrate that both categorical and ordinal classification using deep LSTM networks significantly reduce localization error.
引用
收藏
页数:8
相关论文
共 17 条
[1]  
ANAND A, 2016, 2016 IEEE INTERNATIO
[2]   Long short-term memory [J].
Hochreiter, S ;
Schmidhuber, J .
NEURAL COMPUTATION, 1997, 9 (08) :1735-1780
[3]   MEASURING THE PERFORMANCE OF ORDINAL CLASSIFICATION [J].
Cardoso, Jaime S. ;
Sousa, Ricardo .
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2011, 25 (08) :1173-1195
[4]   A Survey of Architectures and Localization Techniques for Underwater Acoustic Sensor Networks [J].
Erol-Kantarci, Melike ;
Mouftah, Hussein T. ;
Oktug, Sema .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2011, 13 (03) :487-502
[5]  
FAHY F, 1995, SOUND INTENSITY SECO
[6]  
FRANK E., 2001, EUR C MACH LEARN, P145, DOI 10.1007/3-540-44795-413
[7]  
HUANG Z, 2018, 2018 OCEANSMTSIEEE K
[8]   Source localization using deep neural networks in a shallow water environment [J].
Huang, Zhaoqiong ;
Xu, Ji ;
Gong, Zaixiao ;
Wang, Haibin ;
Yan, Yonghong .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2018, 143 (05) :2922-2932
[9]   Development of an accelerometer-based underwater acoustic intensity sensor [J].
Kim, K ;
Gabrielson, TB ;
Lauchle, GC .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2004, 116 (06) :3384-3392
[10]  
PENHALE MB, 2019, THESIS