Period sets of linear recurrences over finite fields and related commutative rings

被引:0
作者
Bush, Michael R. [1 ]
Quijada, Danjoseph [2 ]
机构
[1] Washington & Lee Univ, Dept Math, Lexington, VA 24450 USA
[2] Univ Southern Calif, Dept Math, Los Angeles, CA 90007 USA
来源
INVOLVE, A JOURNAL OF MATHEMATICS | 2021年 / 14卷 / 03期
关键词
sequence; linear recurrence; period; characteristic polynomial; finite field; finite commutative ring; cyclic group algebra; SEQUENCES;
D O I
10.2140/involve.2021.14.361
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
After giving an overview of the existing theory regarding the periods of sequences defined by linear recurrences over finite fields, we give explicit descriptions of the sets of periods that arise if one considers all sequences over F-q generated by linear recurrences for a fixed choice of the degree k in the range 1 <= k <= 4. We also investigate the periods of sequences generated by linear recurrences over rings of the form F-q1 circle plus ... circle plus F-qr.
引用
收藏
页码:361 / 376
页数:16
相关论文
共 50 条
[21]   Plane curves giving rise to blocking sets over finite fields [J].
Shamil Asgarli ;
Dragos Ghioca ;
Chi Hoi Yip .
Designs, Codes and Cryptography, 2023, 91 :3643-3669
[22]   LDPC Codes from Projective Algebraic Sets over Finite Fields [J].
Hu, Wanbao ;
Wu, Yanxia ;
Wang, Zhen ;
Cai, Huaping .
2010 6TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS NETWORKING AND MOBILE COMPUTING (WICOM), 2010,
[23]   Plane curves giving rise to blocking sets over finite fields [J].
Asgarli, Shamil ;
Ghioca, Dragos ;
Yip, Chi Hoi .
DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (11) :3643-3669
[24]   Decomposing polynomial sets into simple sets over finite fields: The positive-dimensional case [J].
Mou, Chenqi ;
Wang, Dongming ;
Li, Xiaoliang .
THEORETICAL COMPUTER SCIENCE, 2013, 468 :102-113
[25]   Decomposing polynomial sets into simple sets over finite fields: The zero-dimensional case [J].
Li, Xiaoliang ;
Mou, Chenqi ;
Wang, Dongming .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (11) :2983-2997
[26]   Maximum subclasses in classes of linear automata over finite fields [J].
Chasovskikh, Anatoliy A. .
DISCRETE MATHEMATICS AND APPLICATIONS, 2020, 30 (06) :365-374
[27]   Some sum-product estimates in matrix rings over finite fields [J].
Xie, Chengfei ;
Ge, Gennian .
FINITE FIELDS AND THEIR APPLICATIONS, 2022, 79
[28]   Faster polynomial multiplication over finite fields using cyclotomic coefficient rings [J].
Harvey, David ;
van Der Hoeven, Loris .
JOURNAL OF COMPLEXITY, 2019, 54
[29]   Complete Intersection Vanishing Ideals on Sets of Clutter Type over Finite Fields [J].
Tochimani, Azucena ;
Villarreal, Rafael H. .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (01) :81-89
[30]   Complete Intersection Vanishing Ideals on Sets of Clutter Type over Finite Fields [J].
Azucena Tochimani ;
Rafael H. Villarreal .
Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 :81-89