An Effective Identification of the Induction Machine Parameters using a Classic Genetic Algorithm, NSGA II and θ-NSGA III

被引:0
|
作者
Maitre, Julien [1 ]
Gaboury, Sebastien [1 ]
Bouchard, Bruno [1 ]
Bouzouane, Abdenour [1 ]
机构
[1] UQAC, LIARA Lab, Chicoutimi, PQ G7H 2B1, Canada
来源
2015 6TH INTERNATIONAL CONFERENCE ON INFORMATION, INTELLIGENCE, SYSTEMS AND APPLICATIONS (IISA) | 2015年
关键词
genetic algorithms; multi-objective; diversity; individuals; solutions; identification; induction machine; MOTOR PARAMETERS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
To remain competitive, the manufacturing industry is using computer processing power to innovate, develop and optimize new cost-efficient production strategies. This is the reason why optimization of automation systems is deployed to improve productivity, quality and robustness of the production. The different existing goals of optimization as the control machine, management of the power consumption, design of electrical installation and prediction of motor faults lead to the necessity of estimating the induction machine parameters (the stator and rotor resistances, the stator and rotor inductances and the magnetizing inductance). To these ends, researchers and companies are investigating efficient methods to identify these parameters. In this paper, we propose an effective method for the induction machine parameters identification based on the new theta-NSGA III genetic algorithm. A comparison between a classic single objective genetic algorithm (GA) and two well-known multiobjectives GAs (NSGA II and theta-NSGA III) is performed. Our results show that the multi-objective GA theta-NSGA III provides a better estimation of parameters than the classic single objective GA and the multi-objective GA NSGA II.
引用
收藏
页数:6
相关论文
共 46 条
  • [31] Identification of Induction Machine parameters including Core Loss Resistance using Recursive Least Mean Square Algorithm
    Siddavatam, Ravi Prakash Reddy
    Loganathan, Umanand
    45TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2019), 2019, : 1095 - 1100
  • [32] 9 Parameters Estimation of an Extended Induction Machine Model Using Genetic Algorithms
    Maitre, Julien
    Bouchard, Bruno
    Bouzouane, Abdenour
    Gaboury, Sebastien
    2015 9TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ELECO), 2015, : 608 - 612
  • [33] Simple mechanical parameters identification of induction machine using voltage sensor only
    Horen, Yoram
    Strajnikov, Pavel
    Kuperman, Alon
    ENERGY CONVERSION AND MANAGEMENT, 2015, 92 : 60 - 66
  • [34] Fuzzy Hammerstein model and its parameters identification using genetic algorithm
    Liutkevicius, Raimundas
    Dainys, Saulius
    Electrical and Control Technologies, Proceedings, 2006, : 195 - 200
  • [35] Induction Motor Parameters Identification using Genetic Algorithms for Varying Flux Levels
    Kampisios, Konstantinos
    Zanchetta, Pericle
    Gerada, Chris
    Trentin, Andrew
    Jasim, Omar
    2008 13TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE, VOLS 1-5, 2008, : 887 - 892
  • [36] Synchronous machine parameters estimation using a new genetic-based algorithm
    El-Naggar, KM
    Youssef, HKM
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 1999, 23 (08) : 719 - 726
  • [37] New identification of induction machine parameters with a meta-heuristic algorithm based on least squares method
    Zorig, Anwar
    Belkheiri, Ahmed
    Bendjedia, Bachir
    Kouzi, Katia
    Belkheiri, Mohammed
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2023, 42 (06) : 1852 - 1866
  • [38] Induction Machine Parameter Identification Using LMS Algorithm Associated with a Nonlinear Adaptive Observer
    Belkheiri, Mohammed
    Belkheiri, Ahmed
    Boufadene, Mourad
    Abbas, Hamou Ait
    Rabhi, Abdlhamid
    PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON ELECTRONIC ENGINEERING AND RENEWABLE ENERGY, ICEERE 2018, 2019, 519 : 597 - 606
  • [39] Offline Identification of Induction Machine Parameters With Core Loss Estimation Using the Stator Current Locus
    Reed, David M.
    Hofmann, Heath F.
    Sun, Jing
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2016, 31 (04) : 1549 - 1558
  • [40] Identification of the Specification Parameters for a Voltage Controlled Oscillator Using an Artificial Neural Network with a Genetic Algorithm
    Temich, Sebastian
    Chruszczyk, Lukas
    Grzechca, Damian
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2018, 24 (06) : 42 - 49