An Effective Identification of the Induction Machine Parameters using a Classic Genetic Algorithm, NSGA II and θ-NSGA III

被引:0
|
作者
Maitre, Julien [1 ]
Gaboury, Sebastien [1 ]
Bouchard, Bruno [1 ]
Bouzouane, Abdenour [1 ]
机构
[1] UQAC, LIARA Lab, Chicoutimi, PQ G7H 2B1, Canada
来源
2015 6TH INTERNATIONAL CONFERENCE ON INFORMATION, INTELLIGENCE, SYSTEMS AND APPLICATIONS (IISA) | 2015年
关键词
genetic algorithms; multi-objective; diversity; individuals; solutions; identification; induction machine; MOTOR PARAMETERS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
To remain competitive, the manufacturing industry is using computer processing power to innovate, develop and optimize new cost-efficient production strategies. This is the reason why optimization of automation systems is deployed to improve productivity, quality and robustness of the production. The different existing goals of optimization as the control machine, management of the power consumption, design of electrical installation and prediction of motor faults lead to the necessity of estimating the induction machine parameters (the stator and rotor resistances, the stator and rotor inductances and the magnetizing inductance). To these ends, researchers and companies are investigating efficient methods to identify these parameters. In this paper, we propose an effective method for the induction machine parameters identification based on the new theta-NSGA III genetic algorithm. A comparison between a classic single objective genetic algorithm (GA) and two well-known multiobjectives GAs (NSGA II and theta-NSGA III) is performed. Our results show that the multi-objective GA theta-NSGA III provides a better estimation of parameters than the classic single objective GA and the multi-objective GA NSGA II.
引用
收藏
页数:6
相关论文
共 46 条
  • [1] A fast and elitist multiobjective genetic algorithm: NSGA-II
    Deb, K
    Pratap, A
    Agarwal, S
    Meyarivan, T
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) : 182 - 197
  • [2] Pareto Optimal Reconfiguration of Power Distribution Systems Using a Genetic Algorithm Based on NSGA-II
    Tomoiaga, Bogdan
    Chindris, Mircea
    Sumper, Andreas
    Sudria-Andreu, Antoni
    Villafafila-Robles, Roberto
    ENERGIES, 2013, 6 (03) : 1439 - 1455
  • [3] Effective Electrical Properties and Fault Diagnosis of Insulating Oil Using the 2D Cell Method and NSGA-II Genetic Algorithm
    Monzon-Verona, Jose Miguel
    Gonzalez-Dominguez, Pablo
    Garcia-Alonso, Santiago
    SENSORS, 2023, 23 (03)
  • [4] Improved NSGA-II Multi-objective Genetic Algorithm Based on Hybridization-encouraged Mechanism
    Sun Yijie
    Shen Gongzhang
    CHINESE JOURNAL OF AERONAUTICS, 2008, 21 (06) : 540 - 549
  • [5] Application of genetic algorithm with a novel adaptive scheme for the identification of induction machine parameters
    Abdelhadi, B
    Benoudjit, A
    Nait-Said, N
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2005, 20 (02) : 284 - 291
  • [6] Identification of Induction Machine Electrical Parameters using Genetic Algorithms Optimization
    Kampisios, Konstantinos
    Zanchetta, Pericle
    Gerada, Chris
    Trentin, Andrew
    2008 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING, VOLS 1-5, 2008, : 1834 - 1840
  • [7] Multiobjective design of water distribution networks using modified NSGA-II algorithm
    Naidu, M. Naveen
    Vasan, A.
    Varma, Murari R. R.
    Patil, Mahesh B.
    WATER SUPPLY, 2023, 23 (03) : 1220 - 1233
  • [8] Optimum Design of Turbo-Alternator Using Modified NSGA-II Algorithm
    Prasad, K. V. R. B.
    Singru, P. M.
    PROCEEDINGS OF SEVENTH INTERNATIONAL CONFERENCE ON BIO-INSPIRED COMPUTING: THEORIES AND APPLICATIONS (BIC-TA 2012), VOL 2, 2013, 202 : 253 - +
  • [9] Optimizing Equivalent Circuit Model Parameters of DFB Lasers With RSM Model and NSGA-II Algorithm
    Ding, Qing-an
    Cheng, Xudong
    Liu, Huixin
    Wang, Xiaojuan
    Guo, Xiaohan
    Zheng, Li
    Li, Junkai
    Dai, Zhenfei
    Yang, Qunying
    Li, Jun
    IEEE PHOTONICS JOURNAL, 2022, 14 (05):
  • [10] NSGA-Net: Neural Architecture Search using Multi-Objective Genetic Algorithm
    Lu, Zhichao
    Whalen, Ian
    Boddeti, Vishnu
    Dhebar, Yashesh
    Deb, Kalyanmoy
    Goodman, Erik
    Banzhaf, Wolfgang
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19), 2019, : 419 - 427