Time-fractional diffusion equation with time dependent diffusion coefficient

被引:30
作者
Fa, KS [1 ]
Lenzi, EK [1 ]
机构
[1] Univ Estadual Maringa, Dept Fis, BR-87020900 Maringa, Parana, Brazil
来源
PHYSICAL REVIEW E | 2005年 / 72卷 / 01期
关键词
D O I
10.1103/PhysRevE.72.011107
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the time-fractional diffusion equation with time dependent diffusion coefficient given by (0O(C)tW)-W-alpha(x,t)=D(alpha,gamma)t(gamma)[partial derivative W-2(x,t)/partial derivative x(2)], where O-0((C)t)alpha is the Caputo operator. We investigate its solutions in the infinite and the finite domains. The mean squared displacement and the mean first passage time are also considered. In particular, for alpha=0, the mean squared displacement is given by < x(2)>similar to t(gamma) and we verify that the mean first passage time is finite for superdiffusive regimes.
引用
收藏
页数:4
相关论文
共 25 条
[21]   Anomalous diffusion and the first passage time problem [J].
Rangarajan, G ;
Ding, MZ .
PHYSICAL REVIEW E, 2000, 62 (01) :120-133
[22]   FRACTIONAL DIFFUSION AND WAVE-EQUATIONS [J].
SCHNEIDER, WR ;
WYSS, W .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (01) :134-144
[23]   THE FRACTIONAL DIFFUSION EQUATION [J].
WYSS, W .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (11) :2782-2785
[24]   Comment on "Mean first passage time for anomalous diffusion" [J].
Yuste, SB ;
Lindenberg, K .
PHYSICAL REVIEW E, 2004, 69 (03) :033101-1
[25]   Chaos, fractional kinetics, and anomalous transport [J].
Zaslavsky, GM .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 371 (06) :461-580