Time-fractional diffusion equation with time dependent diffusion coefficient

被引:29
|
作者
Fa, KS [1 ]
Lenzi, EK [1 ]
机构
[1] Univ Estadual Maringa, Dept Fis, BR-87020900 Maringa, Parana, Brazil
来源
PHYSICAL REVIEW E | 2005年 / 72卷 / 01期
关键词
D O I
10.1103/PhysRevE.72.011107
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the time-fractional diffusion equation with time dependent diffusion coefficient given by (0O(C)tW)-W-alpha(x,t)=D(alpha,gamma)t(gamma)[partial derivative W-2(x,t)/partial derivative x(2)], where O-0((C)t)alpha is the Caputo operator. We investigate its solutions in the infinite and the finite domains. The mean squared displacement and the mean first passage time are also considered. In particular, for alpha=0, the mean squared displacement is given by < x(2)>similar to t(gamma) and we verify that the mean first passage time is finite for superdiffusive regimes.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Identifying a diffusion coefficient in a time-fractional diffusion equation
    Wei, T.
    Li, Y. S.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2018, 151 : 77 - 95
  • [2] Identification of time-dependent convection coefficient in a time-fractional diffusion equation
    Sun, Liangliang
    Yan, Xiongbin
    Wei, Ting
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 346 : 505 - 517
  • [3] Identifying a fractional order and a time-dependent coefficient in a time-fractional diffusion wave equation
    Yan, Xiong-bin
    Wei, Ting
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 424
  • [4] Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation
    Li, Gongsheng
    Zhang, Dali
    Jia, Xianzheng
    Yamamoto, Masahiro
    INVERSE PROBLEMS, 2013, 29 (06)
  • [5] Determination of a Nonlinear Coefficient in a Time-Fractional Diffusion Equation
    Zeki, Mustafa
    Tinaztepe, Ramazan
    Tatar, Salih
    Ulusoy, Suleyman
    Al-Hajj, Rami
    FRACTAL AND FRACTIONAL, 2023, 7 (05)
  • [6] Robin coefficient identification for a time-fractional diffusion equation
    Wei, T.
    Zhang, Z. Q.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2016, 24 (04) : 647 - 666
  • [7] INVERSE COEFFICIENT PROBLEM FOR THE TIME-FRACTIONAL DIFFUSION EQUATION
    Durdiev, D. K.
    EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2021, 9 (01): : 44 - 54
  • [8] Simultaneous uniqueness identification of the fractional order and diffusion coefficient in a time-fractional diffusion equation
    Jing, Xiaohua
    Jia, Junxiong
    Song, Xueli
    APPLIED MATHEMATICS LETTERS, 2025, 162
  • [9] On the recovery of a time dependent diffusion coefficient for a space fractional diffusion equation
    Muhammad Ali
    Sara Aziz
    Salman A. Malik
    Analysis and Mathematical Physics, 2021, 11
  • [10] On the recovery of a time dependent diffusion coefficient for a space fractional diffusion equation
    Ali, Muhammad
    Aziz, Sara
    Malik, Salman A.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (03)