BOUNDARY CONCENTRATIONS ON SEGMENTS FOR A NEUMANN AMBROSETTI-PRODI PROBLEM

被引:0
作者
Ao, W. E. I. W. E. I. [1 ]
Fu, M. E. N. G. D. I. E. [1 ]
Liu, C. H. A. O. [2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510405, Peoples R China
关键词
Ambrosetti-Prodi equation; boundary concentrating solutions; Lyapunov-Schmidt reduction; LAZER-MCKENNA CONJECTURE; INTERIOR PEAK SOLUTIONS; NUMBER; UNIQUENESS; LINES;
D O I
10.3934/dcds.2022083
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a smooth bounded domain Omega subset of R-2, we consider the following Ambrosetti-Prodi problem with Neumann boundary: {-triangle u = |u|(p) - sigma in Omega, partial derivative u/partial derivative v = 0 on partial derivative Omega. where p > 2, sigma > 0 is a large parameter and nu denotes the outward normal of partial derivative Omega. We constructed a new class of solutions comprised of a large number of spikes concentrated on a segment of the boundary containing a local minimum point of the mean curvature function and having the same mean curvature at the endpoints. A similar boundary-concentrating phenomenon was obtained for the Lin-Ni-Takagi problem by Ao et al. [3].
引用
收藏
页码:4991 / 5015
页数:25
相关论文
共 40 条
[11]  
Butscher A, 2012, ANN SCUOLA NORM-SCI, V11, P653
[12]  
Dancer E. N., 2007, ADV DIFFERENTIAL EQU, V12, P961
[13]   A note on asymptotic uniqueness for some nonlinearities which change sign [J].
Dancer, EN .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2000, 61 (02) :305-312
[14]   ON THE UNIQUENESS OF THE POSITIVE SOLUTION OF A SINGULARLY PERTURBED PROBLEM [J].
DANCER, EN .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1995, 25 (03) :957-975
[15]   On the superlinear Lazer-McKenna conjecture: Part II [J].
Dancer, EN ;
Yan, SS .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (09) :1331-1358
[16]  
DANCER EN, 1978, J MATH PURE APPL, V57, P351
[17]   On the superlinear Lazer-McKenna conjecture [J].
Dancer, EN ;
Yan, SS .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 210 (02) :317-351
[18]  
Gidas B., 1981, MATH ANAL APPL A, V7a
[19]   THEORY OF BIOLOGICAL PATTERN FORMATION [J].
GIERER, A ;
MEINHARDT, H .
KYBERNETIK, 1972, 12 (01) :30-39
[20]   On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems [J].
Gui, CF ;
Wei, JC .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2000, 52 (03) :522-538