BOUNDARY CONCENTRATIONS ON SEGMENTS FOR A NEUMANN AMBROSETTI-PRODI PROBLEM

被引:0
作者
Ao, W. E. I. W. E. I. [1 ]
Fu, M. E. N. G. D. I. E. [1 ]
Liu, C. H. A. O. [2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510405, Peoples R China
关键词
Ambrosetti-Prodi equation; boundary concentrating solutions; Lyapunov-Schmidt reduction; LAZER-MCKENNA CONJECTURE; INTERIOR PEAK SOLUTIONS; NUMBER; UNIQUENESS; LINES;
D O I
10.3934/dcds.2022083
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a smooth bounded domain Omega subset of R-2, we consider the following Ambrosetti-Prodi problem with Neumann boundary: {-triangle u = |u|(p) - sigma in Omega, partial derivative u/partial derivative v = 0 on partial derivative Omega. where p > 2, sigma > 0 is a large parameter and nu denotes the outward normal of partial derivative Omega. We constructed a new class of solutions comprised of a large number of spikes concentrated on a segment of the boundary containing a local minimum point of the mean curvature function and having the same mean curvature at the endpoints. A similar boundary-concentrating phenomenon was obtained for the Lin-Ni-Takagi problem by Ao et al. [3].
引用
收藏
页码:4991 / 5015
页数:25
相关论文
共 40 条
  • [1] A MULTIPLICITY RESULT FOR A CLASS OF ELLIPTIC BOUNDARY-VALUE-PROBLEMS
    AMANN, H
    HESS, P
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1979, 84 : 145 - 151
  • [2] Ambrosetti A., 1972, ANN MAT PUR APPL, V93, P231, DOI DOI 10.1007/BF02412022
  • [3] [Anonymous], 1981, B SOC BRAS MAT, DOI DOI 10.1007/BF02588317
  • [4] Ao WW, 2018, ANN SCUOLA NORM-SCI, V18, P653
  • [5] An optimal bound on the number of interior spike solutions for the Lin-Ni-Takagi problem
    Ao, Weiwei
    Wei, Juncheng
    Zeng, Jing
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (07) : 1324 - 1356
  • [6] TRIPLE JUNCTION SOLUTIONS FOR A SINGULARLY PERTURBED NEUMANN PROBLEM
    Ao, Weiwei
    Musso, Monica
    Wei, Juncheng
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (06) : 2519 - 2541
  • [7] On spikes concentrating on line-segments to a semilinear Neumann problem
    Ao, Weiwei
    Musso, Monica
    Wei, Juncheng
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (4-5) : 881 - 901
  • [8] ON SPIKES CONCENTRATING ON LINES FOR A NEUMANN SUPERLINEAR AMBROSETTI-PRODI TYPE PROBLEM
    Bendahou, Imene
    Khemiri, Zied
    Mahmoudi, Fethi
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (04) : 2367 - 2391
  • [9] NUMBER OF SOLUTIONS OF CERTAIN SEMI-LINEAR ELLIPTIC PROBLEMS
    BERESTYCKI, H
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1981, 40 (01) : 1 - 29
  • [10] SOLUTIONS OF A NONLINEAR DIRICHLET PROBLEM
    BERGER, MS
    PODOLAK, E
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1975, 24 (09) : 837 - 846