CALCULI, HODGE OPERATORS AND LAPLACIANS ON A QUANTUM HOPF FIBRATION

被引:11
作者
Landi, Giovanni [1 ,2 ]
Zampini, Alessandro [3 ]
机构
[1] Univ Trieste, Dipartimento Matemat & Informat, I-34127 Trieste, Italy
[2] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy
[3] Ludwig Maximilians Univ Munchen, Math Inst, D-80333 Munich, Germany
关键词
Quantum groups; quantum spheres; differential calculi; Hopf bundles; connections; Hodge star operators; Laplacian operators; BICOVARIANT DIFFERENTIAL CALCULI; SPIN GEOMETRY; REPRESENTATIONS; CONNECTIONS; ALGEBRAS;
D O I
10.1142/S0129055X11004370
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe Laplacian operators on the quantum group SUq(2) equipped with the four-dimensional bicovariant differential calculus of Woronowicz as well as on the quantum homogeneous space S-q(2) with the restricted left covariant three-dimensional differential calculus. This is done by giving a family of Hodge dualities on both the exterior algebras of SUq(2) and S-q(2). We also study gauged Laplacian operators acting on sections of line bundles over the quantum sphere.
引用
收藏
页码:575 / 613
页数:39
相关论文
共 37 条
[1]  
[Anonymous], 1991, Heat Kernels and Dirac Operators
[2]   CLASSIFICATION OF 3-DIMENSIONAL COVARIANT DIFFERENTIAL CALCULI ON PODLES QUANTUM SPHERES AND ON RELATED SPACES [J].
APEL, J ;
SCHMUDGEN, K .
LETTERS IN MATHEMATICAL PHYSICS, 1994, 32 (01) :25-36
[3]   THE 3D SPIN GEOMETRY OF THE QUANTUM TWO-SPHERE [J].
Brain, Simon ;
Landi, Giovanni .
REVIEWS IN MATHEMATICAL PHYSICS, 2010, 22 (08) :963-993
[4]   Quantum differentials and the q-monopole revisited [J].
Brzezinski, T ;
Majid, S .
ACTA APPLICANDAE MATHEMATICAE, 1998, 54 (02) :185-232
[5]   QUANTUM GROUP GAUGE-THEORY ON QUANTUM SPACES [J].
BRZEZINSKI, T ;
MAJID, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 157 (03) :591-638
[6]  
Brzezinski T, 1998, AIP CONF PROC, V453, P3, DOI 10.1063/1.57118
[7]  
CIRIO L, ARXIV10031202MATHQA
[8]   Anti-Selfdual Connections on the Quantum Projective Plane: Monopoles [J].
D'Andrea, Francesco ;
Landi, Giovanni .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 297 (03) :841-893
[9]   Differential structures on quantum principal bundles [J].
Durdevic, M .
REPORTS ON MATHEMATICAL PHYSICS, 1998, 41 (01) :91-115
[10]  
Durdevic M, 1997, REV MATH PHYS, V9, P531, DOI 10.1142/S0129055X9700021X