Dissipative Sturm-Liouville operators in limit-point case

被引:10
作者
Allahverdiev, BP [1 ]
机构
[1] Suleyman Demirel Univ, Dept Math, TR-32260 Isparta, Turkey
关键词
Sturm-Liouville equations; boundary value problems; dissipative operators; selfadjoint dilation; scattering matrix; functional model; characteristic function; completeness of the eigenfunctions;
D O I
10.1007/s10440-004-7026-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Dissipative singular Sturm-Liouville operators are studied in the Hilbert space L-w(2) [a, b) (-infinity < a < b <= infinity), that the extensions of a minimal symmetric operator in Weyl's limit-point case. We construct a selfadjoint dilation of the dissipative operator and its incoming and outgoing spectral representations, which makes it possible to determine the scattering matrix of the dilation. We also construct a functional model of the dissipative operator and define its characteristic function in terms of the Titchmarsh-Weyl function of a selfadjoint operator. Finally, ill the case when the Titchmarsh-Weyl function of the selfadjoint operator is a meromorphic in complex plane, we prove theorems oil completeness of the system of eigenfunctions and associated functions of the dissipative Sturm-Liouville operators.
引用
收藏
页码:237 / 248
页数:12
相关论文
共 50 条
[21]   SPECTRAL PROBLEMS OF NONSELF-ADJOINT SINGULAR DISCRETE STURM-LIOUVILLE OPERATORS [J].
Allahverdiev, Bilender P. .
MATHEMATICA SLOVACA, 2016, 66 (04) :967-978
[22]   On Recovering the Sturm-Liouville Differential Operators on Time Scales [J].
Kuznetsova, M. A. .
MATHEMATICAL NOTES, 2021, 109 (1-2) :74-88
[23]   THE COMPLETENESS OF EIGENFUNCTIONS OF PERTURBATION CONNECTED WITH STURM-LIOUVILLE OPERATORS [J].
Zhong WANG Department of MathematicsZhaoqing UniversityZhaoqing ChinaEmailkyczwangzqueducnHongyou WU Department of MathematicsNorthern Illinois UniversityDEKALBIllinois USA .
JournalofSystemsScience&Complexity, 2006, (04) :527-537
[24]   On the inverse nodal problems for discontinuous Sturm-Liouville operators [J].
Wang, Yu Ping ;
Yurko, V. A. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (05) :4086-4109
[25]   The completeness of eigenfunctions of perturbation connected with Sturm-Liouville operators [J].
Wang Z. ;
Wu H. .
Journal of Systems Science and Complexity, 2006, 19 (4) :527-537
[26]   Reconstruction of Sturm-Liouville differential operators on A-graphs [J].
V. A. Yurko .
Differential Equations, 2011, 47 :50-59
[27]   Spectral analysis of discontinuous Sturm-Liouville operators with Herglotzs transmission [J].
Du, Gaofeng ;
Gao, Chenghua ;
Wang, Jingjing .
ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (04) :2108-2119
[28]   DONOGHUE m-FUNCTIONS FOR SINGULAR STURM-LIOUVILLE OPERATORS [J].
Gesztesy, F. ;
Littlejohn, L. L. ;
Nichols, R. ;
Piorkowski, M. ;
Stanfill, J. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2024, 35 (01) :101-138
[29]   Nonclassical Sturm-Liouville problems and Schrodinger operators on radial trees [J].
Carlson, Robert .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2000,
[30]   The Sturm-Liouville group [J].
Markus, L .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 171 (1-2) :335-365