Electrothermal effects on high-gain magnetized liner inertial fusion

被引:2
作者
Chen, Shijia [1 ]
Yang, Xiaohu [1 ,2 ]
Wu, Fuyuan [2 ,4 ]
Ma, Yanyun [2 ,3 ]
Zhang, Guobo [1 ]
Yuan, Yun [1 ]
Cui, Ye [1 ]
Ramis, Rafael [5 ]
机构
[1] Natl Univ Def Technol, Dept Phys, Changsha 410073, Hunan, Peoples R China
[2] Shanghai Jiao Tong Univ, Collaborat Innovat Ctr IFSA CICIFSA, Shanghai 200240, Peoples R China
[3] Natl Univ Def Technol, Coll Adv Interdisciplinary Studies, Changsha 410073, Hunan, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Phys & Astron, Shanghai 200240, Peoples R China
[5] Univ Politecn Madrid, ETSI Aeronaut & Espacio, P Cardenal Cisneros 3, E-28040 Madrid, Spain
基金
中国国家自然科学基金;
关键词
high-gain MagLIF; electrothermal terms; Nernst thermomagnetic wave; Nernst flux limiter; COMPUTER CODE; HOT; TRANSPORT; MULTI; QEOS;
D O I
10.1088/1361-6587/ac234d
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
High-gain magnetized liner inertial fusion (MagLIF) is a possible way to realize fusion. To investigate electrothermal effects on the transport of magnetic flux and thermal flux in MagLIF, this study has developed a resistive magnetohydrodynamics (MHD) module including an axial magnetic field using the code MULTI-IFE. MagLIF driven by a peak current of 60 MA releases 1080 MJ of fusion energy for a 1 cm-long liner, corresponding to an energy gain of approximately 180. The magnetic field is decompressed by electrothermal effects owing to the great temperature gradient in the fuel. This papers shows that a Nernst flux limiter of between 0.1 and 0.3 prevents the Nernst velocity from significantly decompressing the axial magnetic field and achieving a relative high yield. Compared with that of a simple gas target, the magnetic flux loss in the high-gain MagLIF target can be reduced from 70% to 30% owing to the magnetic insulation in the cryogenic deuterium-tritium (DT). Most of the cryogenic DT layer in a high-gain MagLIF target is burned, resulting in a significant increase in the fusion yield.
引用
收藏
页数:8
相关论文
共 42 条
[1]  
Atzeni S, 2004, PHYS INERTIAL FUSION, P195
[2]   Ignition conditions for magnetized target fusion in cylindrical geometry [J].
Basko, MM ;
Kemp, AJ ;
Meyer-ter-Vehn, J .
NUCLEAR FUSION, 2000, 40 (01) :59-68
[3]  
Bell AR, 1995, SUSSP PROC, V45, P139
[4]  
Braginskii S.I., 1965, Rev. Plasma Phys, V1, P205
[5]  
Campbell LL, 1923, LONGMANS
[6]   The importance of electrothermal terms in Ohm's law for magnetized spherical implosions [J].
Davies, J. R. ;
Betti, R. ;
Chang, P. -Y. ;
Fiksel, G. .
PHYSICS OF PLASMAS, 2015, 22 (11)
[7]   RADIATION TRANSPORT AND ATOMIC PHYSICS MODELING IN HIGH-ENERGY-DENSITY LASER-PRODUCED PLASMAS [J].
EIDMANN, K .
LASER AND PARTICLE BEAMS, 1994, 12 (02) :223-244
[8]   Magnetic flux conservation in an imploding plasma [J].
Garcia-Rubio, F. ;
Sanz, J. ;
Betti, R. .
PHYSICAL REVIEW E, 2018, 97 (01)
[9]   Mass ablation and magnetic flux losses through a magnetized plasma-liner wall interface [J].
Garcia-Rubio, F. ;
Sanz, J. .
PHYSICS OF PLASMAS, 2017, 24 (07)
[10]  
Giuliani JL, 2018, IEEE T PLASMA SCI, V46, P3766, DOI [10.1109/TPS.2018.2863721, 10.1109/ICOPS35962.2018.9575273]