Few-body problem in terms of correlated Gaussians

被引:12
作者
Silvestre-Brac, Bernard [1 ]
Mathieu, Vincent [2 ]
机构
[1] CNRS, IN2P3, Lab Phys Subatom & Cosmol, F-38026 Grenoble, France
[2] Univ Mons, Acad Univ Wallonie Bruxelles, Grp Phys Nucl Theor, B-7000 Mons, Belgium
来源
PHYSICAL REVIEW E | 2007年 / 76卷 / 04期
关键词
Fourier transforms - Problem solving - Quantum theory - Statistical methods - Stochastic programming;
D O I
10.1103/PhysRevE.76.046702
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In their textbook, Suzuki and Varga [Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems (Springer, Berlin, 1998)] present the stochastic variational method with the correlated Gaussian basis in a very exhaustive way. However, the Fourier transform of these functions and their application to the management of a relativistic kinetic energy operator are missing and cannot be found in the literature. In this paper we present these interesting formulas. We also give a derivation for formulations concerning central potentials.
引用
收藏
页数:10
相关论文
共 8 条
  • [1] [Anonymous], 1964, Handbook of mathematical functions
  • [2] THE POTENTIAL HARMONIC EXPANSION METHOD
    DELARIPELLE, MF
    [J]. ANNALS OF PHYSICS, 1983, 147 (02) : 281 - 320
  • [3] The three-nucleon continuum: Achievements, challenges and applications
    Glockle, W
    Witala, H
    Huber, D
    Kamada, H
    Golak, J
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1996, 274 (3-4): : 107 - 285
  • [4] Gradshteyn I.S., 1994, Tables of Integrals, Series, and Products
  • [5] Hammond B. L., 1994, MONTE CARLO METHOD A
  • [6] PRECISE NONVARIATIONAL CALCULATION OF THE 2-PHOTON ANNIHILATION RATE OF THE POSITRONIUM NEGATIVE-ION
    KRIVEC, R
    HAFTEL, MI
    MANDELZWEIG, VB
    [J]. PHYSICAL REVIEW A, 1993, 47 (02): : 911 - 917
  • [7] SPECTRUM AND DECAY PROPERTIES OF DIQUONIA
    SILVESTREBRAC, B
    SEMAY, C
    [J]. ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1993, 59 (03): : 457 - 470
  • [8] Suzuki Y., 1998, Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems