Bilinear Fractional Integral Along Homogeneous Curves

被引:2
作者
Li, Junfeng [1 ]
Liu, Peng [1 ]
机构
[1] Beijing Normal Univ, Lab Math & Complex Syst, Minist Educ, Sch Math Sci, Beijing 100875, Peoples R China
关键词
Bilinear operator; Fractional integral along curve; Multi-linear interpolation; HILBERT-TRANSFORMS; HARMONIC-ANALYSIS; CONVOLUTION;
D O I
10.1007/s00041-016-9511-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The boundedness of the bilinear fractional integrals along homogeneous curves with is obtained. The authors extend the results of the bilinear fractional integrals of Kenig and Stein (Math Res Lett 6:1-15, 1999) and Grafakos and Kalton (Math Ann 319(1):151-180, 2001) to integrals along the curves.
引用
收藏
页码:1465 / 1479
页数:15
相关论文
共 14 条
[1]  
Grafakos L, 2014, GRAD TEXTS MATH, V250, DOI 10.1007/978-1-4939-1230-8
[2]   ON MULTILINEAR FRACTIONAL INTEGRALS [J].
GRAFAKOS, L .
STUDIA MATHEMATICA, 1992, 102 (01) :49-56
[3]   Some remarks on multilinear maps and interpolation [J].
Grafakos, L ;
Kalton, N .
MATHEMATISCHE ANNALEN, 2001, 319 (01) :151-180
[4]  
Gressman P, 2004, MATH RES LETT, V11, P869
[5]   Bilinear Hilbert Transforms Associated with Plane Curves [J].
Guo, Jingwei ;
Xiao, Lechao .
JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (02) :967-995
[6]  
Kenig CE, 1999, MATH RES LETT, V6, P467
[7]  
Kuk S, 2012, MATH RES LETT, V19, P1145
[8]   BILINEAR HILBERT TRANSFORMS ALONG CURVES I: THE MONOMIAL CASE [J].
Li, Xiaochun .
ANALYSIS & PDE, 2013, 6 (01) :197-220
[9]   ON THE BOUNDEDNESS OF THE BILINEAR HILBERT TRANSFORM ALONG "NON-FLAT" SMOOTH CURVES [J].
Lie, Victor .
AMERICAN JOURNAL OF MATHEMATICS, 2015, 137 (02) :313-363
[10]  
OBERLIN DM, 1987, P AM MATH SOC, V99, P56