pest monitoring;
deep learning;
object detection;
adaptive feature fusion;
RECOGNITION;
D O I:
10.3390/insects13060554
中图分类号:
Q96 [昆虫学];
学科分类号:
摘要:
Simple Summary Monitoring pests is a labor-intensive and time-consuming task for agricultural experts. This paper proposes a new approach to classifying and counting different categories of crop pests. Specifically, we propose a multi-category pest detection network (MCPD-net), which includes a multiscale feature pyramid network and a novel adaptive feature region proposal network. The multiscale feature pyramid network is used to fuse the multiscale pest information, which significantly improves detection accuracy. The adaptive feature region proposal network addresses the problem of not aligning when region proposal network (RPN) iterating, especially for small pest objects. Extensive experiments on the multi-category pests dataset 2021 (MPD2021) demonstrated that the proposed method provides significant improvements in terms of average precision (AP) and average recall (AR); it outperformed other deep learning-based models. Specialized pest control for agriculture is a high-priority agricultural issue. There are multiple categories of tiny pests, which pose significant challenges to monitoring. Previous work mainly relied on manual monitoring of pests, which was labor-intensive and time-consuming. Recently, deep-learning-based pest detection methods have achieved remarkable improvements and can be used for automatic pest monitoring. However, there are two main obstacles in the task of pest detection. (1) Small pests often go undetected because much information is lost during the network training process. (2) The highly similar physical appearances of some categories of pests make it difficult to distinguish the specific categories for networks. To alleviate the above problems, we proposed the multi-category pest detection network (MCPD-net), which includes a multiscale feature pyramid network (MFPN) and a novel adaptive feature region proposal network (AFRPN). MFPN can fuse the pest information in multiscale features, which significantly improves detection accuracy. AFRPN solves the problem of anchor and feature misalignment during RPN iterating, especially for small pest objects. In extensive experiments on the multi-category pests dataset 2021 (MPD2021), the proposed method achieved 67.3% mean average precision (mAP) and 89.3% average recall (AR), outperforming other deep learning-based models.
机构:
Yunnan Normal Univ, Sch Informat Sci & Technol, Kunming 650500, Yunnan, Peoples R China
Yunnan Normal Univ, Lab Pattern Recognit & Artificial Intelligence, Kunming 650500, Yunnan, Peoples R ChinaYunnan Normal Univ, Sch Informat Sci & Technol, Kunming 650500, Yunnan, Peoples R China
Wang, Haifeng
Jiang, Lvjiyuan
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Normal Univ, Sch Informat Sci & Technol, Kunming 650500, Yunnan, Peoples R China
Yunnan Normal Univ, Lab Pattern Recognit & Artificial Intelligence, Kunming 650500, Yunnan, Peoples R ChinaYunnan Normal Univ, Sch Informat Sci & Technol, Kunming 650500, Yunnan, Peoples R China
Jiang, Lvjiyuan
Zhao, Qian
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Normal Univ, Sch Informat Sci & Technol, Kunming 650500, Yunnan, Peoples R China
Yunnan Normal Univ, Lab Pattern Recognit & Artificial Intelligence, Kunming 650500, Yunnan, Peoples R ChinaYunnan Normal Univ, Sch Informat Sci & Technol, Kunming 650500, Yunnan, Peoples R China
Zhao, Qian
Li, Hao
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Normal Univ, Sch Informat Sci & Technol, Kunming 650500, Yunnan, Peoples R China
Yunnan Normal Univ, Lab Pattern Recognit & Artificial Intelligence, Kunming 650500, Yunnan, Peoples R ChinaYunnan Normal Univ, Sch Informat Sci & Technol, Kunming 650500, Yunnan, Peoples R China
Li, Hao
Yan, Kai
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Normal Univ, Sch Informat Sci & Technol, Kunming 650500, Yunnan, Peoples R China
Yunnan Normal Univ, Lab Pattern Recognit & Artificial Intelligence, Kunming 650500, Yunnan, Peoples R ChinaYunnan Normal Univ, Sch Informat Sci & Technol, Kunming 650500, Yunnan, Peoples R China
Yan, Kai
Yang, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Normal Univ, Sch Informat Sci & Technol, Kunming 650500, Yunnan, Peoples R China
Yunnan Normal Univ, Lab Pattern Recognit & Artificial Intelligence, Kunming 650500, Yunnan, Peoples R ChinaYunnan Normal Univ, Sch Informat Sci & Technol, Kunming 650500, Yunnan, Peoples R China
Yang, Yang
Li, Songlin
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Normal Univ, Lab Pattern Recognit & Artificial Intelligence, Kunming 650500, Yunnan, Peoples R China
Yunnan Power Grid Co Ltd, Yuxi Power Supply Bur, Yuxi 653100, Peoples R ChinaYunnan Normal Univ, Sch Informat Sci & Technol, Kunming 650500, Yunnan, Peoples R China
Li, Songlin
Zhang, Yungang
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Normal Univ, Sch Informat Sci & Technol, Kunming 650500, Yunnan, Peoples R China
Yunnan Normal Univ, Lab Pattern Recognit & Artificial Intelligence, Kunming 650500, Yunnan, Peoples R ChinaYunnan Normal Univ, Sch Informat Sci & Technol, Kunming 650500, Yunnan, Peoples R China
Zhang, Yungang
Qiao, Lianliu
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Normal Univ, Lab Pattern Recognit & Artificial Intelligence, Kunming 650500, Yunnan, Peoples R China
Yunnan Power Grid Co Ltd, Yuxi Power Supply Bur, Yuxi 653100, Peoples R ChinaYunnan Normal Univ, Sch Informat Sci & Technol, Kunming 650500, Yunnan, Peoples R China
Qiao, Lianliu
Fu, Cuilian
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Normal Univ, Lab Pattern Recognit & Artificial Intelligence, Kunming 650500, Yunnan, Peoples R China
Yunnan Power Grid Co Ltd, Yuxi Power Supply Bur, Yuxi 653100, Peoples R ChinaYunnan Normal Univ, Sch Informat Sci & Technol, Kunming 650500, Yunnan, Peoples R China
Fu, Cuilian
Yin, Hong
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Normal Univ, Lab Pattern Recognit & Artificial Intelligence, Kunming 650500, Yunnan, Peoples R China
Yunnan Power Grid Co Ltd, Yuxi Power Supply Bur, Yuxi 653100, Peoples R ChinaYunnan Normal Univ, Sch Informat Sci & Technol, Kunming 650500, Yunnan, Peoples R China
Yin, Hong
Hu, Yun
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Normal Univ, Lab Pattern Recognit & Artificial Intelligence, Kunming 650500, Yunnan, Peoples R China
Yunnan Power Grid Co Ltd, Yuxi Power Supply Bur, Yuxi 653100, Peoples R ChinaYunnan Normal Univ, Sch Informat Sci & Technol, Kunming 650500, Yunnan, Peoples R China
Hu, Yun
Yu, Haibin
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Normal Univ, Lab Pattern Recognit & Artificial Intelligence, Kunming 650500, Yunnan, Peoples R China
Yunnan Power Grid Co Ltd, Yuxi Power Supply Bur, Yuxi 653100, Peoples R ChinaYunnan Normal Univ, Sch Informat Sci & Technol, Kunming 650500, Yunnan, Peoples R China
机构:
School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, ChongqingSchool of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing
Zhong Qu
Shize Fan
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing City Management College, ChongqingSchool of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing
Shize Fan
Xuehui Yin
论文数: 0引用数: 0
h-index: 0
机构:
School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, ChongqingSchool of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing
机构:
Xijing Univ, Sch Elect Informat, Xian 710123, Peoples R China
Xijing Univ, Xian Key Lab High Precis Ind Intelligent Vis Measu, Xian 710123, Peoples R China
Shaanxi Jiurui Technol Co Ltd, Xian 710065, Shaanxi, Peoples R ChinaXijing Univ, Sch Elect Informat, Xian 710123, Peoples R China
Jiang, Lingjie
Yuan, Baoxi
论文数: 0引用数: 0
h-index: 0
机构:
Xijing Univ, Sch Elect Informat, Xian 710123, Peoples R China
Xijing Univ, Xian Key Lab High Precis Ind Intelligent Vis Measu, Xian 710123, Peoples R China
Shaanxi Jiurui Technol Co Ltd, Xian 710065, Shaanxi, Peoples R ChinaXijing Univ, Sch Elect Informat, Xian 710123, Peoples R China
Yuan, Baoxi
Du, Jiawei
论文数: 0引用数: 0
h-index: 0
机构:
Xijing Univ, Sch Elect Informat, Xian 710123, Peoples R ChinaXijing Univ, Sch Elect Informat, Xian 710123, Peoples R China
Du, Jiawei
Chen, Boyu
论文数: 0引用数: 0
h-index: 0
机构:
Air Force Engn Univ, Air Traff Control & Ground Control Intercept Coll, Xian 710038, Peoples R ChinaXijing Univ, Sch Elect Informat, Xian 710123, Peoples R China
Chen, Boyu
Xie, Hanfei
论文数: 0引用数: 0
h-index: 0
机构:
Xijing Univ, Sch Elect Informat, Xian 710123, Peoples R China
Xijing Univ, Xian Key Lab High Precis Ind Intelligent Vis Measu, Xian 710123, Peoples R China
Shaanxi Jiurui Technol Co Ltd, Xian 710065, Shaanxi, Peoples R ChinaXijing Univ, Sch Elect Informat, Xian 710123, Peoples R China
Xie, Hanfei
Tian, Juan
论文数: 0引用数: 0
h-index: 0
机构:
Xijing Univ, Sch Humanities & Educ, Xian 710123, Peoples R ChinaXijing Univ, Sch Elect Informat, Xian 710123, Peoples R China
Tian, Juan
Yuan, Ziqi
论文数: 0引用数: 0
h-index: 0
机构:
Minzu Univ China, Sch Econ, Beijing 100081, Peoples R ChinaXijing Univ, Sch Elect Informat, Xian 710123, Peoples R China
机构:
Southwest Univ Sci & Technol, Sch Informat Engn, Mianyang 621010, Peoples R China
Chinese Acad Sci, Inst Intelligent Machines, Hefei Inst Phys Sci, Hefei 230031, Peoples R ChinaSouthwest Univ Sci & Technol, Sch Informat Engn, Mianyang 621010, Peoples R China
Kang, Chenrui
Jiao, Lin
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Intelligent Machines, Hefei Inst Phys Sci, Hefei 230031, Peoples R China
Anhui Univ, Sch Internet, Natl Engn Res Ctr Agroecol Big Data Anal & Applica, Hefei 230031, Peoples R ChinaSouthwest Univ Sci & Technol, Sch Informat Engn, Mianyang 621010, Peoples R China
Jiao, Lin
Liu, Kang
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Aeronaut & Aviat Engn, Hong Kong 999077, Peoples R ChinaSouthwest Univ Sci & Technol, Sch Informat Engn, Mianyang 621010, Peoples R China
Liu, Kang
Liu, Zhigui
论文数: 0引用数: 0
h-index: 0
机构:
Southwest Univ Sci & Technol, Sch Informat Engn, Mianyang 621010, Peoples R ChinaSouthwest Univ Sci & Technol, Sch Informat Engn, Mianyang 621010, Peoples R China
Liu, Zhigui
Wang, Rujing
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Univ, Sch Internet, Natl Engn Res Ctr Agroecol Big Data Anal & Applica, Hefei 230031, Peoples R ChinaSouthwest Univ Sci & Technol, Sch Informat Engn, Mianyang 621010, Peoples R China