Automatic Crop Pest Detection Oriented Multiscale Feature Fusion Approach

被引:22
作者
Dong, Shifeng [1 ,2 ]
Du, Jianming [1 ]
Jiao, Lin [1 ,3 ]
Wang, Fenmei [1 ,2 ]
Liu, Kang [1 ,2 ]
Teng, Yue [1 ,2 ]
Wang, Rujing [1 ,2 ]
机构
[1] Chinese Acad Sci, Hefei Inst Phys Sci, Inst Intelligent Machines, Hefei 230031, Peoples R China
[2] Univ Sci & Technol China, Sci Isl Branch, Grad Sch, Hefei 230026, Peoples R China
[3] Anhui Unviers, Sch Internet, Hefei 230039, Anhui, Peoples R China
关键词
pest monitoring; deep learning; object detection; adaptive feature fusion; RECOGNITION;
D O I
10.3390/insects13060554
中图分类号
Q96 [昆虫学];
学科分类号
摘要
Simple Summary Monitoring pests is a labor-intensive and time-consuming task for agricultural experts. This paper proposes a new approach to classifying and counting different categories of crop pests. Specifically, we propose a multi-category pest detection network (MCPD-net), which includes a multiscale feature pyramid network and a novel adaptive feature region proposal network. The multiscale feature pyramid network is used to fuse the multiscale pest information, which significantly improves detection accuracy. The adaptive feature region proposal network addresses the problem of not aligning when region proposal network (RPN) iterating, especially for small pest objects. Extensive experiments on the multi-category pests dataset 2021 (MPD2021) demonstrated that the proposed method provides significant improvements in terms of average precision (AP) and average recall (AR); it outperformed other deep learning-based models. Specialized pest control for agriculture is a high-priority agricultural issue. There are multiple categories of tiny pests, which pose significant challenges to monitoring. Previous work mainly relied on manual monitoring of pests, which was labor-intensive and time-consuming. Recently, deep-learning-based pest detection methods have achieved remarkable improvements and can be used for automatic pest monitoring. However, there are two main obstacles in the task of pest detection. (1) Small pests often go undetected because much information is lost during the network training process. (2) The highly similar physical appearances of some categories of pests make it difficult to distinguish the specific categories for networks. To alleviate the above problems, we proposed the multi-category pest detection network (MCPD-net), which includes a multiscale feature pyramid network (MFPN) and a novel adaptive feature region proposal network (AFRPN). MFPN can fuse the pest information in multiscale features, which significantly improves detection accuracy. AFRPN solves the problem of anchor and feature misalignment during RPN iterating, especially for small pest objects. In extensive experiments on the multi-category pests dataset 2021 (MPD2021), the proposed method achieved 67.3% mean average precision (mAP) and 89.3% average recall (AR), outperforming other deep learning-based models.
引用
收藏
页数:17
相关论文
共 45 条
[1]  
[Anonymous], 2000, INT C INT TECHN
[2]  
[Anonymous], 2010, International journal of computer vision, DOI DOI 10.1007/s11263-009-0275-4
[3]  
[Anonymous], 2015, ARXIV151108060
[4]   Detecting and Classifying Pests in Crops Using Proximal Images and Machine Learning: A Review [J].
Barbedo, Jayme Garcia Arnal .
AI, 2020, 1 (02) :312-328
[5]   A cognitive vision approach to early pest detection in greenhouse crops [J].
Boissard, Paul ;
Martin, Vincent ;
Moisan, Sabine .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2008, 62 (02) :81-93
[6]   Hybrid Task Cascade for Instance Segmentation [J].
Chen, Kai ;
Pang, Jiangmiao ;
Wang, Jiaqi ;
Xiong, Yu ;
Li, Xiaoxiao ;
Sun, Shuyang ;
Feng, Wansen ;
Liu, Ziwei ;
Shi, Jianping ;
Ouyang, Wanli ;
Loy, Chen Change ;
Lin, Dahua .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4969-4978
[7]  
Chen X, 2015, ARXIV
[8]   Deformable Convolutional Networks [J].
Dai, Jifeng ;
Qi, Haozhi ;
Xiong, Yuwen ;
Li, Yi ;
Zhang, Guodong ;
Hu, Han ;
Wei, Yichen .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :764-773
[9]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[10]   Research on insect pest image detection and recognition based on bio-inspired methods [J].
Deng, Limiao ;
Wang, Yanjiang ;
Han, Zhongzhi ;
Yu, Renshi .
BIOSYSTEMS ENGINEERING, 2018, 169 :139-148