Blow-up of a nonlocal semilinear parabolic equation with positive initial energy

被引:50
作者
Gao, Wenjie [1 ,2 ]
Han, Yuzhu [1 ]
机构
[1] Jilin Univ, Inst Math, Changchun 130012, Peoples R China
[2] Jilin Univ, State Key Lab Automot Dynam Simulat, Changchun 130025, Peoples R China
关键词
Blow-up; Neumann boundary condition; Positive initial energy; NEUMANN BOUNDARY-CONDITIONS;
D O I
10.1016/j.aml.2010.12.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this short work, a semilinear parabolic equation with a homogeneous Neumann boundary condition is studied. A blow-up result for a certain solution with positive initial energy is established. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:784 / 788
页数:5
相关论文
共 9 条
[1]   BLOW-UP IN A SYSTEM OF PARTIAL-DIFFERENTIAL EQUATIONS WITH CONSERVED 1ST INTEGRAL .2. PROBLEMS WITH CONVECTION [J].
BUDD, CJ ;
DOLD, JW ;
STUART, AM .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1994, 54 (03) :610-640
[2]   A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions [J].
El Soufi, A. ;
Jazar, M. ;
Monneau, R. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2007, 24 (01) :17-39
[3]  
Friedman A., 1983, Partial Differential Equations
[4]  
Hu B., 1995, Rend. Circ. Mat. Palermo., V44, P479, DOI [10.1007/bf02844682, DOI 10.1007/BF02844682]
[5]   Blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions [J].
Jazar, M. ;
Kiwan, R. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (02) :215-218
[6]   Blow-up of the solution for a p-Laplacian equation with positive initial energy [J].
Liu, Wenjun ;
Wang, Mingxin .
ACTA APPLICANDAE MATHEMATICAE, 2008, 103 (02) :141-146
[7]   Global nonexistence theorems for a class of evolution equations with dissipation [J].
Vitillaro, E .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 149 (02) :155-182
[8]  
Wang MX, 1996, MATH METHOD APPL SCI, V19, P1141, DOI 10.1002/(SICI)1099-1476(19960925)19:14<1141::AID-MMA811>3.0.CO
[9]  
2-9