LIPSCHITZ FREE SPACES ISOMORPHIC TO THEIR INFINITE SUMS AND GEOMETRIC APPLICATIONS

被引:17
作者
Albiac, Fernando [1 ]
Ansorena, Jose L. [2 ]
Cuth, Marek [3 ]
Doucha, Michal [4 ]
机构
[1] Univ Publ Navarra, InaMat2, Dept Math Stat & Comp Sci, Campus Arrosadia, Pamplona 31006, Spain
[2] Univ La Rioja, Dept Math & Comp Sci, Logrono 26004, Spain
[3] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Prague 18675 8, Czech Republic
[4] Czech Acad Sci, Inst Math, Zitna 2, Prague 11567 1, Czech Republic
关键词
Arens-Eells space; Lipschitz free space; transportation cost space; Quasi-Banach space; Lipschitz free p-space; BANACH-SPACES; APPROXIMATION; SUBSPACES; BASES;
D O I
10.1090/tran/8444
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find general conditions under which Lipschitz-free spaces over metric spaces are isomorphic to their infinite direct l(1)-sum and exhibit several applications. As examples of such applications we have that Lipschitz-free spaces over balls and spheres of the same finite dimensions are isomorphic, that the Lipschitz-free space over Z(d) is isomorphic to its l(1)-sum, or that the Lipschitz-free space over any snowflake of a doubling metric space is isomorphic to l(1). Moreover, following new ideas of Bru`e et al. from [J. Funct. Anal. 280 (2021), pp. 108868, 21] we provide an elementary self-contained proof that Lipschitz-free spaces over doubling metric spaces are complemented in Lipschitz-free spaces over their superspaces and they have BAP. Everything, including the results about doubling metric spaces, is explored in the more comprehensive setting of p-Banach spaces, which allows us to appreciate the similarities and differences of the theory between the cases p < 1 and p = 1.
引用
收藏
页码:7281 / 7312
页数:32
相关论文
共 38 条
[11]   Linear Lipschitz and C1 extension operators through random projection [J].
Brue, Elia ;
Di Marino, Simone ;
Stra, Federico .
JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (04)
[12]   On the bounded approximation property on subspaces of lp when 0 &lt; p &lt; 1 and related issues [J].
Cabello Sanchez, Felix ;
Castillo, Jesus M. F. ;
Moreno, Yolanda .
FORUM MATHEMATICUM, 2019, 31 (06) :1533-1556
[13]   Isomorphisms between spaces of Lipschitz functions [J].
Candido, Leandro ;
Cuth, Marek ;
Doucha, Michal .
JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (08) :2697-2727
[14]  
Casazza PG, 2001, HANDBOOK OF THE GEOMETRY OF BANACH SPACES, VOL 1, P271, DOI 10.1016/S1874-5849(01)80009-7
[15]  
CASAZZA PG, 1990, LONDON MATH SOC LECT, V158, P49
[16]   Free Spaces Over Some Proper Metric Spaces [J].
Dalet, A. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2015, 12 (03) :973-986
[17]   FREE SPACES OVER COUNTABLE COMPACT METRIC SPACES [J].
Dalet, A. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (08) :3537-3546
[18]   Convex geodesic bicombings and hyperbolicity [J].
Descombes, Dominic ;
Lang, Urs .
GEOMETRIAE DEDICATA, 2015, 177 (01) :367-384
[19]   On the Kantorovich-Rubinstein theorem [J].
Edwards, D. A. .
EXPOSITIONES MATHEMATICAE, 2011, 29 (04) :387-398
[20]   Lipschitz-free Banach spaces [J].
Godefroy, G ;
Kalton, NJ .
STUDIA MATHEMATICA, 2003, 159 (01) :121-141