LIPSCHITZ FREE SPACES ISOMORPHIC TO THEIR INFINITE SUMS AND GEOMETRIC APPLICATIONS

被引:17
作者
Albiac, Fernando [1 ]
Ansorena, Jose L. [2 ]
Cuth, Marek [3 ]
Doucha, Michal [4 ]
机构
[1] Univ Publ Navarra, InaMat2, Dept Math Stat & Comp Sci, Campus Arrosadia, Pamplona 31006, Spain
[2] Univ La Rioja, Dept Math & Comp Sci, Logrono 26004, Spain
[3] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Prague 18675 8, Czech Republic
[4] Czech Acad Sci, Inst Math, Zitna 2, Prague 11567 1, Czech Republic
关键词
Arens-Eells space; Lipschitz free space; transportation cost space; Quasi-Banach space; Lipschitz free p-space; BANACH-SPACES; APPROXIMATION; SUBSPACES; BASES;
D O I
10.1090/tran/8444
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find general conditions under which Lipschitz-free spaces over metric spaces are isomorphic to their infinite direct l(1)-sum and exhibit several applications. As examples of such applications we have that Lipschitz-free spaces over balls and spheres of the same finite dimensions are isomorphic, that the Lipschitz-free space over Z(d) is isomorphic to its l(1)-sum, or that the Lipschitz-free space over any snowflake of a doubling metric space is isomorphic to l(1). Moreover, following new ideas of Bru`e et al. from [J. Funct. Anal. 280 (2021), pp. 108868, 21] we provide an elementary self-contained proof that Lipschitz-free spaces over doubling metric spaces are complemented in Lipschitz-free spaces over their superspaces and they have BAP. Everything, including the results about doubling metric spaces, is explored in the more comprehensive setting of p-Banach spaces, which allows us to appreciate the similarities and differences of the theory between the cases p < 1 and p = 1.
引用
收藏
页码:7281 / 7312
页数:32
相关论文
共 38 条
[1]  
Albiac F, 2016, GRAD TEXTS MATH, V233, P1, DOI 10.1007/978-3-319-31557-7
[2]   Integration in quasi-Banach spaces and the fundamental theorem of calculus [J].
Albiac, F. ;
Ansorena, J. L. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (09) :2059-2076
[3]   Lipschitz structure of quasi-Banach spaces [J].
Albiac, F. ;
Kalton, N. J. .
ISRAEL JOURNAL OF MATHEMATICS, 2009, 170 (01) :317-335
[4]   Lipschitz free p-spaces for 0 &lt; p &lt; 1 [J].
Albiac, Fernando ;
Ansorena, Jose L. ;
Cuth, Marek ;
Doucha, Michal .
ISRAEL JOURNAL OF MATHEMATICS, 2020, 240 (01) :65-98
[5]   Embeddability of lp and bases in Lipschitz free p-spaces for 0 &lt; p ≤ 1 [J].
Albiac, Fernando ;
Ansorena, Jose L. ;
Cuth, Marek ;
Doucha, Michal .
JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (04)
[6]   Linear extension operators between spaces of Lipschitz maps and optimal transport [J].
Ambrosio, Luigi ;
Puglisi, Daniele .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 764 :1-21
[7]  
[Anonymous], 1970, BASES BANACH SPACES
[8]   A NOTE ON SUBSYMMETRIC RENORMINGS OF BANACH SPACES [J].
Ansorena, J. L. .
QUAESTIONES MATHEMATICAE, 2018, 41 (05) :615-628
[9]  
ASSOUAD P, 1983, B SOC MATH FR, V111, P429
[10]  
Brudnyi A, 2007, AM J MATH, V129, P217