Partial regularity results for non-autonomous functionals with Φ-growth conditions

被引:0
作者
Giannetti, Flavia [1 ]
di Napoli, Antonia Passarelli [1 ]
Tachikawa, Atsushi [2 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Appl R Caccioppoli, Via Cintia, I-80126 Naples, Italy
[2] Tokyo Univ Sci, Fac Sci & Technol, Dept Math, Noda, Chiba 2788510, Japan
关键词
Partial regularity; Nonstandard growth; Non-autonomous functionals; HOLDER CONTINUITY; ELLIPTIC-SYSTEMS; MINIMIZERS; INTEGRALS; EXISTENCE; EQUATIONS; GRADIENT;
D O I
10.1007/s10231-017-0658-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the partial Holder continuity of the local minimizers of non-autonomous integral functionals of the type integral(Omega) Phi((A(ij)(alpha beta)(x, u)D(i)u(alpha)D(j)u(beta))(1/2))dx, where is an Orlicz function satisfying both the Delta(2) and del(2) conditions and the function is uniformly elliptic, bounded and continuous. Assuming in addition that the function is Holder continuous, we prove the partial Holder continuity also of the gradient of the local minimizers.
引用
收藏
页码:2147 / 2165
页数:19
相关论文
共 38 条
[1]   Regularity results for stationary electro-rheological fluids [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) :213-259
[2]   PARTIAL REGULARITY UNDER ANISOTROPIC (P, Q) GROWTH-CONDITIONS [J].
ACERBI, E ;
FUSCO, N .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 107 (01) :46-67
[3]   Regularity results for a class of functionals with non-standard growth [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (02) :121-140
[4]  
[Anonymous], 2002, Atti Sem. Mat. Fis. Univ. Modena
[5]  
[Anonymous], 1987, EXAMPLE SOLUTION DIS
[6]  
[Anonymous], 1998, Rend. Mat. Appl.
[7]  
[Anonymous], 1998, SERIES MODERN SURVEY
[8]  
[Anonymous], 2003, LECT NOTES MATH
[9]  
[Anonymous], 2003, DIRECT METHODS CALCU, DOI DOI 10.1142/5002
[10]  
[Anonymous], LECT NOTES