Structure and properties of poly(lactic acid)/poly(lactic acid)-α-cyclodextrin inclusion compound composites

被引:4
作者
Zhang, Li [1 ]
Zhen, Weijun [1 ]
Zhou, Yufang [1 ]
机构
[1] Xinjiang Univ, Minist Educ & Xinjiang Uygur Reg, Key Lab Oil & Gas Fine Chem, Urumqi 830046, Peoples R China
基金
美国国家科学基金会;
关键词
alpha-cyclodextrin; crystallization; inclusion compound; mechanical properties; poly(lactic acid); CYCLODEXTRIN-ENHANCED CRYSTALLIZATION; GLASS-TRANSITION DYNAMICS; ALPHA-CYCLODEXTRIN; MECHANICAL-PROPERTIES; GAMMA-CYCLODEXTRIN; BETA-CYCLODEXTRIN; POLY(D; L-LACTIC ACID); POLY(ETHYLENE GLYCOL); NUCLEATION MECHANISM; THERMAL-BEHAVIOR;
D O I
10.1515/polyeng-2016-0088
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Poly(lactic acid) (PLA) was synthesized using a green catalyst, nano-zinc oxide (ZnO). The optimum synthesis conditions of PLA were as follows: a stoichiometric amount of 0.5 wt% of nano-ZnO, polymerization time of 14 h, and polymerization temperature of 170 degrees C. Gel permeation chromatography results showed that the weight-average molecular weight (M-w) of PLA was 13,072 g/mol with a polydispersity index (PDI) of 1.7. Furthermore, PLA-alpha-cyclodextrin inclusion compounds (PLA-CD-ICs) were prepared by ultrasonic co-precipitation techniques. X-ray diffraction analysis and Fourier transform infrared spectroscopy demonstrated the change in lattice of alpha-CD from a cage configuration to a tunnel structure and the existence of some physical interactions between alpha-CD and PLA in the PLA-CD-ICs. To enhance the crystallization properties of PLA, PLA/PLA-CD-IC composites were blended with different contents of PLA-CD-ICs as nucleating agents. The crystallization behavior and comprehensive performance were investigated by differential scanning calorimetry, polarized optical microscopy, tensile testing, dynamic mechanical analysis, and scanning electron microscopy. Compared to PLA, the crystallinities of PLA/PLA-CD-IC composites were increased by 24.0%, 26.3%, 27.3%, and 31.8%. The results of all the analyses proved that PLA-CD-ICs were useful as green organic nucleators and improved the comprehensive performance of PLA materials.
引用
收藏
页码:897 / 909
页数:13
相关论文
共 52 条
[1]   Microstructure and Properties of Polypropylene/Carbon Nanotube Nanocomposites [J].
Bikiaris, Dimitrios .
MATERIALS, 2010, 3 (04) :2884-2946
[2]   Non-isothermal crystallization kinetics of poly (lactic acid)/graphene nanocomposites [J].
Chen, Yanhua ;
Yao, Xiayin ;
Gu, Qun ;
Pan, Zhijuan .
JOURNAL OF POLYMER ENGINEERING, 2013, 33 (02) :163-171
[3]   Preparation and mechanical properties of nanocomposites of poly(D,L-lactide) with Ca-deficient hydroxyapatite nanocrystals [J].
Deng, XM ;
Hao, JY ;
Wang, CS .
BIOMATERIALS, 2001, 22 (21) :2867-2873
[4]   Surface Design for Controlled Crystallization: The Role of Surface Chemistry and Nanoscale Pores in Heterogeneous Nucleation [J].
Diao, Ying ;
Myerson, Allan S. ;
Hatton, T. Alan ;
Trout, Bernhardt L. .
LANGMUIR, 2011, 27 (09) :5324-5334
[5]   Nucleation and crystallization behavior of poly(butylene succinate) induced by its α-cyclodextrin inclusion complex:: Effect of stoichiometry [J].
Dong, T ;
Shin, KM ;
Zhu, B ;
Inoue, Y .
MACROMOLECULES, 2006, 39 (06) :2427-2428
[6]   Nucleation mechanism of α-cyclodextrin-enhanced crystallization of some semicrystalline aliphatic polymers [J].
Dong, T ;
He, Y ;
Zhu, B ;
Shin, KM ;
Inoue, Y .
MACROMOLECULES, 2005, 38 (18) :7736-7744
[7]   Poly(L-lactic acid) metal organic framework composites: optical, thermal and mechanical properties [J].
Elangovan, Dhayalan ;
Yuzay, Isinay E. ;
Emselke, Susan ;
Auras, Rafael .
POLYMER INTERNATIONAL, 2012, 61 (01) :30-37
[8]   A literature review of poly(lactic acid) [J].
Garlotta, D .
JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2001, 9 (02) :63-84
[9]   Cyclodextrin-based polyrotaxanes [J].
Girek, Tomasz .
JOURNAL OF INCLUSION PHENOMENA AND MACROCYCLIC CHEMISTRY, 2013, 76 (3-4) :237-252
[10]   α-Cyclodextrin-enhanced crystallization of poly(3-hydroxybutyrate) [J].
He, Y ;
Inoue, Y .
BIOMACROMOLECULES, 2003, 4 (06) :1865-1867