Low-order empirical modeling of distributed parameter systems using temporal and spatial eigenfunctions

被引:20
作者
Bleris, LG
Kothare, MV
机构
[1] Lehigh Univ, Dept Chem Engn, Integrated Microchem Syst Lab, Bethlehem, PA 18015 USA
[2] Lehigh Univ, Dept Elect & Comp Engn, Integrated Microchem Syst Lab, Bethlehem, PA 18015 USA
基金
美国国家科学基金会;
关键词
empirical modeling; distributed parameter systems; eigenfunctions;
D O I
10.1016/j.compchemeng.2004.09.021
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We provide a methodology for retrieving spatial and temporal eigenfunctions from an ensemble of data, using Proper Orthogonal Decomposition (POD). Focusing on a Newtonian fluid flow problem, we illustrate that the efficiency of these two families of eigenfunctions can be different when used in model reduction projections. The above observation can be of critical importance for low-order modeling of Distributed Parameter Systems (DPS) in on-line control applications, due to the computational savings that are introduced. Additionally, for the particular fluid flow problem, we introduce the use of the entropy of the data ensemble as the criterion for choosing the appropriate eigenfunction family. (c) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:817 / 827
页数:11
相关论文
共 50 条
[41]   P-type iterative learning control for a class of fractional order distributed parameter switched systems [J].
Lan, Yong-Hong ;
Liu, Li ;
Xia, Jun-Jun .
2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, :2836-2841
[42]   On the Lyapunov-based second-order SMC design for some classes of distributed parameter systems [J].
Orlov, Yury ;
Pisano, Alessandro ;
Scodina, Stefano ;
Usai, Elio .
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2012, 29 (04) :437-457
[43]   Engineering Methods and Software Support for Modeling and Design of Discrete-time Control of Distributed Parameter Systems [J].
Hulko, G. ;
Belavy, C. ;
Meszaros, A. ;
Bucek, P. ;
Ondrejkovic, K. ;
Zajicek, P. .
EUROPEAN JOURNAL OF CONTROL, 2009, 15 (3-4) :407-417
[44]   Mobile sensor routing for parameter estimation of distributed systems using the parallel tunneling method [J].
Zieba, Tomasz ;
Ucinski, Dariusz .
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2008, 18 (03) :307-318
[45]   Approximate Optimal Control Design for Nonlinear One-Dimensional Parabolic PDE Systems Using Empirical Eigenfunctions and Neural Network [J].
Luo, Biao ;
Wu, Huai-Ning .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2012, 42 (06) :1538-1549
[46]   Algebraic fault detection and isolation for parabolic distributed-parameter systems using modulation functions [J].
Fischer, F. ;
Deutscher, J. .
IFAC PAPERSONLINE, 2016, 49 (08) :162-167
[47]   Linear estimation using covariance information in distributed parameter systems with non-independent uncertainty [J].
Nakamori, S. ;
Hermoso-Carazo, A. ;
Linares-Perez, J. .
SIGNAL PROCESSING, 2006, 86 (10) :3012-3020
[48]   Derivation of fixed-interval smoothing algorithm using covariance information in distributed parameter systems [J].
Nakamori, S. ;
Garcia-Ligero, M. J. ;
Hermoso-Carazo, A. ;
Linares-Perez, J. .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 176 (02) :662-672
[49]   Improved control for distributed parameter systems with time-dependent spatial domains utilizing mobile sensor actuator networks [J].
Zhang, Jian-Zhong ;
Cui, Bao-Tong ;
Zhuang, Bo .
CHINESE PHYSICS B, 2017, 26 (09)
[50]   Fuzzy Intermittent Extended Dissipative Control for Delayed Distributed Parameter Systems With Stochastic Disturbance: A Spatial Point Sampling Approach [J].
Ding, Kui ;
Zhu, Quanxin .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (06) :1734-1749