Low-order empirical modeling of distributed parameter systems using temporal and spatial eigenfunctions

被引:20
作者
Bleris, LG
Kothare, MV
机构
[1] Lehigh Univ, Dept Chem Engn, Integrated Microchem Syst Lab, Bethlehem, PA 18015 USA
[2] Lehigh Univ, Dept Elect & Comp Engn, Integrated Microchem Syst Lab, Bethlehem, PA 18015 USA
基金
美国国家科学基金会;
关键词
empirical modeling; distributed parameter systems; eigenfunctions;
D O I
10.1016/j.compchemeng.2004.09.021
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We provide a methodology for retrieving spatial and temporal eigenfunctions from an ensemble of data, using Proper Orthogonal Decomposition (POD). Focusing on a Newtonian fluid flow problem, we illustrate that the efficiency of these two families of eigenfunctions can be different when used in model reduction projections. The above observation can be of critical importance for low-order modeling of Distributed Parameter Systems (DPS) in on-line control applications, due to the computational savings that are introduced. Additionally, for the particular fluid flow problem, we introduce the use of the entropy of the data ensemble as the criterion for choosing the appropriate eigenfunction family. (c) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:817 / 827
页数:11
相关论文
共 50 条
  • [21] Second-order observers for second-order distributed parameter systems in R2
    Nguyen, Tu Duc
    SYSTEMS & CONTROL LETTERS, 2008, 57 (10) : 787 - 795
  • [22] Safety verification for distributed parameter systems using barrier functionals
    Ahmadi, Mohamadreza
    Valmorbida, Giorgio
    Papachristodoulou, Antonis
    SYSTEMS & CONTROL LETTERS, 2017, 108 : 33 - 39
  • [23] Control of nonlinear distributed parameter systems using generalized invariants
    Palazoglu, A
    Karakas, A
    AUTOMATICA, 2000, 36 (05) : 697 - 703
  • [24] Multiphysics modelling of immune processes using distributed parameter systems
    Bocharov, Gennady A.
    Grebennikov, Dmitry S.
    Savinkov, Rostislav S.
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2023, 38 (05) : 279 - 292
  • [25] Observer Design for Second-Order Distributed Parameter Systems in R2
    Nguyen, Tu Duc
    MODELING IDENTIFICATION AND CONTROL, 2008, 29 (02) : 51 - 58
  • [26] Iterative learning control for one-dimensional fourth order distributed parameter systems
    Qin FU
    Panpan GU
    Jianrong WU
    ScienceChina(InformationSciences), 2017, 60 (01) : 177 - 189
  • [27] Spatial basis functions based fault localisation for linear parabolic distributed parameter systems
    Feng, Yun
    IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (20) : 3580 - 3588
  • [28] Reduced order controllers for distributed parameter systems: LQG balanced truncation and an adaptive approach
    King, Belinda Batten
    Hovakimyan, Naira
    Evans, Katie A.
    Buhl, Michael
    MATHEMATICAL AND COMPUTER MODELLING, 2006, 43 (9-10) : 1136 - 1149
  • [29] Iterative learning control for one-dimensional fourth order distributed parameter systems
    Fu, Qin
    Gu, Panpan
    Wu, Jianrong
    SCIENCE CHINA-INFORMATION SCIENCES, 2017, 60 (01)
  • [30] Bridging on-line systems modeling with fault detection for a class of unknown nonlinear distributed parameter systems
    Feng, Yun
    Wang, Yaonan
    Zhang, Yazhi
    IFAC PAPERSONLINE, 2022, 55 (06): : 228 - 233