Low-order empirical modeling of distributed parameter systems using temporal and spatial eigenfunctions

被引:20
|
作者
Bleris, LG
Kothare, MV
机构
[1] Lehigh Univ, Dept Chem Engn, Integrated Microchem Syst Lab, Bethlehem, PA 18015 USA
[2] Lehigh Univ, Dept Elect & Comp Engn, Integrated Microchem Syst Lab, Bethlehem, PA 18015 USA
基金
美国国家科学基金会;
关键词
empirical modeling; distributed parameter systems; eigenfunctions;
D O I
10.1016/j.compchemeng.2004.09.021
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We provide a methodology for retrieving spatial and temporal eigenfunctions from an ensemble of data, using Proper Orthogonal Decomposition (POD). Focusing on a Newtonian fluid flow problem, we illustrate that the efficiency of these two families of eigenfunctions can be different when used in model reduction projections. The above observation can be of critical importance for low-order modeling of Distributed Parameter Systems (DPS) in on-line control applications, due to the computational savings that are introduced. Additionally, for the particular fluid flow problem, we introduce the use of the entropy of the data ensemble as the criterion for choosing the appropriate eigenfunction family. (c) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:817 / 827
页数:11
相关论文
共 50 条
  • [11] Temporal low-order statistics of natural sounds
    Attias, H
    Schreiner, CE
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 9: PROCEEDINGS OF THE 1996 CONFERENCE, 1997, 9 : 27 - 33
  • [12] Efficient frequency response computation for low-order modelling of spatially distributed systems
    Dellar, O. J.
    Jones, B. Li
    INTERNATIONAL JOURNAL OF CONTROL, 2020, 93 (03) : 366 - 376
  • [13] Low order stabilizing controllers for a class of distributed parameter systems
    Sano, Hideki
    AUTOMATICA, 2018, 92 : 49 - 55
  • [14] ENERGETICS OF LOW-ORDER SPECTRAL SYSTEMS
    BAER, F
    TELLUS, 1971, 23 (03): : 218 - &
  • [15] Dynamical systems modeling of low-frequency variability in low-order atmospheric models
    Broer, Henk
    Vitolo, Renato
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2008, 10 (2-3): : 401 - 419
  • [16] Low-order stabilizers for linear systems
    Wang, QG
    Lee, TH
    He, JB
    AUTOMATICA, 1997, 33 (04) : 651 - 654
  • [17] Fan broadband interaction noise modeling using a low-order method
    Grace, S. M.
    JOURNAL OF SOUND AND VIBRATION, 2015, 346 : 402 - 423
  • [18] Parameter estimation for low-order models of complex buildings
    Martincevic, Anita
    Starcic, Antonio
    Vasak, Mario
    2014 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE EUROPE (ISGT EUROPE), 2014,
  • [19] Identification of low-order parameter-varying models for large-scale systems
    Wattamwar, Satyajit K.
    Weiland, Siep
    Backx, Ton
    JOURNAL OF PROCESS CONTROL, 2010, 20 (01) : 158 - 172
  • [20] Low-order modeling and grouping of HRTFs for auralization using wavelet transforms
    Torres, JCB
    Petraglia, MR
    Tenenbaum, RA
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL IV, PROCEEDINGS: AUDIO AND ELECTROACOUSTICS SIGNAL PROCESSING FOR COMMUNICATIONS, 2004, : 33 - 36