Low-order empirical modeling of distributed parameter systems using temporal and spatial eigenfunctions

被引:20
作者
Bleris, LG
Kothare, MV
机构
[1] Lehigh Univ, Dept Chem Engn, Integrated Microchem Syst Lab, Bethlehem, PA 18015 USA
[2] Lehigh Univ, Dept Elect & Comp Engn, Integrated Microchem Syst Lab, Bethlehem, PA 18015 USA
基金
美国国家科学基金会;
关键词
empirical modeling; distributed parameter systems; eigenfunctions;
D O I
10.1016/j.compchemeng.2004.09.021
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We provide a methodology for retrieving spatial and temporal eigenfunctions from an ensemble of data, using Proper Orthogonal Decomposition (POD). Focusing on a Newtonian fluid flow problem, we illustrate that the efficiency of these two families of eigenfunctions can be different when used in model reduction projections. The above observation can be of critical importance for low-order modeling of Distributed Parameter Systems (DPS) in on-line control applications, due to the computational savings that are introduced. Additionally, for the particular fluid flow problem, we introduce the use of the entropy of the data ensemble as the criterion for choosing the appropriate eigenfunction family. (c) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:817 / 827
页数:11
相关论文
共 39 条
[1]   Optimal sensor location and reduced order observer design for distributed process systems [J].
Alonso, AA ;
Kevrekidis, IG ;
Banga, JR ;
Frouzakis, CE .
COMPUTERS & CHEMICAL ENGINEERING, 2004, 28 (1-2) :27-35
[2]   Dynamic optimization of dissipative PDE systems using nonlinear order reduction [J].
Armaou, A ;
Christofides, PD .
CHEMICAL ENGINEERING SCIENCE, 2002, 57 (24) :5083-5114
[3]   Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations [J].
Atwell, JA ;
King, BB .
MATHEMATICAL AND COMPUTER MODELLING, 2001, 33 (1-3) :1-19
[4]   Finite-dimensional approximation and control of non-linear parabolic PDE systems [J].
Baker, J ;
Christofides, PD .
INTERNATIONAL JOURNAL OF CONTROL, 2000, 73 (05) :439-456
[5]   Nonlinear control of incompressible fluid flow: Application to Burgers' equation and 2D channel flow [J].
Baker, J ;
Armaou, A ;
Christofides, PD .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 252 (01) :230-255
[6]   Proper orthogonal decomposition-based control of transverse beam vibrations: Experimental implementation [J].
Banks, HT ;
del Rosario, RCH ;
Tran, HT .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2002, 10 (05) :717-726
[7]   Optimization of transport-reaction processes using nonlinear model reduction [J].
Bendersky, E ;
Christofides, PD .
CHEMICAL ENGINEERING SCIENCE, 2000, 55 (19) :4349-4366
[8]  
BLERIS LG, 2004, IN PRESS IEEE T CONT
[9]  
BLERIS LG, 2004, P 7 IFAC S DYNAM CON
[10]  
BRENCHLEY DL, 1998, P 2 INT C MICR TECHN, P18