Impedance learning control for physical human-robot cooperative interaction

被引:12
作者
Brahmi, Brahim [1 ]
El Bojairami, Ibrahim [2 ]
Laraki, Mohamed-Hamza [3 ]
El-Bayeh, Claude Ziad [4 ]
Saad, Maarouf [3 ]
机构
[1] Miami Univ, Elect & Comp Engn Dept, Oxford, OH 45056 USA
[2] McGill Univ, Mech Engn, Montreal, PQ, Canada
[3] Ecole Technol Super, Elect Engn, Montreal, PQ, Canada
[4] Concordia Univ, Canada Excellence Res Chairs Team, Montreal, PQ, Canada
关键词
Human-robot collaboration; Robust control; Machine learning; Adaptive control; Desired intended motion; Impedance control; UPPER-LIMB EXOSKELETON; TERMINAL SLIDING MODE; ADAPTIVE ROBUST-CONTROL; MOTION CONTROL; HUMAN ARM; MANIPULATORS; DRIVEN; PERFORMANCE; TRACKING; SYSTEMS;
D O I
10.1016/j.matcom.2021.07.016
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, three challenges often encountered when upper limb rehabilitation robots are integrated with impaired people are addressed. Firstly, estimation of Desired Intended Motion (DIM) of the robot's wearer is achieved. Secondly, robust adaptive impedance control based on the Modified Function Approximation Technique (MFAT) is designed. Lastly, a new Integral Nonsingular Terminal Sliding Mode Control (INTSMC) is suggested. In particular, the integration of INTSMC enriches the system by ensuring continuous performance tracking of system's trajectories, high robustness, fast transient response, finite-time convergence, and chattering reduction. Besides, the MFAT strategy approximates the dynamic model without collecting any prior knowledge of the lower and upper bounds of the dynamic model's individual uncertainties. Furthermore, leveraging Radial Basis Function Neural Network (RBFNN) to link estimated DIM to the adaptive impedance control allows the upper limb robot to easily track the target impedance model. Finally, in efforts to validate the scheme in real-time, controlled experimental cases are conducted using the exoskeleton robot. (C) 2021 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1224 / 1242
页数:19
相关论文
共 50 条
  • [1] Impedance learning adaptive super-twisting control of a robotic exoskeleton for physical human-robot interaction
    Brahmi, Brahim
    Rahman, Mohammad Habibur
    Saad, Maarouf
    IET CYBER-SYSTEMS AND ROBOTICS, 2023, 5 (01)
  • [2] Admittance control for physical human-robot interaction
    Keemink, Arvid Q. L.
    van der Kooij, Herman
    Stienen, Arno H. A.
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2018, 37 (11) : 1421 - 1444
  • [3] Impedance Control with Bounded Actions for Human-Robot Interaction
    Ramirez-Vera, Victor, I
    Mendoza-Gutierrez, Marco O.
    Bonilla-Gutierrez, Isela
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (11) : 14989 - 15000
  • [4] Model reference adaptive impedance control in Cartesian coordinates for physical human-robot interaction
    Sharifi, Mojtaba
    Behzadipour, Saeed
    Vossoughi, G. R.
    ADVANCED ROBOTICS, 2014, 28 (19) : 1277 - 1290
  • [5] Mimetic Communication with Impedance Control for Physical Human-Robot Interaction
    Lee, Dongheui
    Ott, Christian
    Nakamura, Yoshihiko
    ICRA: 2009 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-7, 2009, : 4281 - +
  • [6] Impedance Learning-Based Adaptive Control for Human-Robot Interaction
    Sharifi, Mojtaba
    Azimi, Vahid
    Mushahwar, Vivian K.
    Tavakoli, Mahdi
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2022, 30 (04) : 1345 - 1358
  • [7] Impedance Variation and Learning Strategies in Human-Robot Interaction
    Sharifi, Mojtaba
    Zakerimanesh, Amir
    Mehr, Javad K.
    Torabi, Ali
    Mushahwar, Vivian K.
    Tavakoli, Mahdi
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (07) : 6462 - 6475
  • [8] Dissipative Control for Physical Human-Robot Interaction
    Bowyer, Stuart A.
    Rodriguez y Baena, Ferdinando
    IEEE TRANSACTIONS ON ROBOTICS, 2015, 31 (06) : 1281 - 1293
  • [9] RESEARCH ON HUMAN-ROBOT PHYSICAL INTERACTION CONTROL BASED ON ADAPTIVE IMPEDANCE CONTROL
    Sun, Qing
    Guo, Shuai
    Zhang, Leigang
    Fei, Sixian
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2024, 24 (01)
  • [10] Model reference adaptive impedance control for physical human-robot interaction
    Alqaudi B.
    Modares H.
    Ranatunga I.
    Tousif S.M.
    Lewis F.L.
    Popa D.O.
    Alqaudi, Bakur (balqaudi@yic.edu.sa), 1600, South China University of Technology (14): : 68 - 82