Ricci flow and a sphere theorem for-pinched Yamabe metrics

被引:0
作者
Chen, Eric [1 ,2 ]
Wei, Guofang [1 ]
Ye, Rugang [1 ]
机构
[1] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA
[2] Univ Calif Berkeley, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
Ricci flow; Sphere theorem; Integral curvature; Curvature pinching; Yamabe metrics; CURVATURE; DEFORMATION; MANIFOLDS;
D O I
10.1016/j.aim.2021.108054
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a differential sphere and Ricci flow convergence theorem for positive scalar curvature Yamabe metrics with L-n/2-pinched curvature in general dimensions n. Previously, E. Hebey and M. Vaugon obtained in [9] a corresponding result for L-p-pinching with p > n/2. (c) 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:14
相关论文
共 20 条