An ultra-stable 2.9 μm guided-wave chip laser and application to nano-spectroscopy

被引:1
作者
Lancaster, D. G. [1 ,2 ]
Otten, D. E. [1 ,2 ]
Cernescu, A. [3 ]
Hebert, N. Bourbeau [4 ]
Chen, G. Y. [1 ]
Johnson, C. M. [5 ]
Monro, T. M. [1 ,6 ]
Genest, J. [4 ]
机构
[1] Univ South Australia, Sch Engn, Laser Phys & Photon Devices Lab, Mawson Lakes, SA 5095, Australia
[2] Red Chip Photon Pty Ltd, Mawson Lakes, SA 5095, Australia
[3] NeaSpec GmBH, D-85540 Munich, Germany
[4] Univ Laval, Ctr Opt Photon & Laser, Quebec City, PQ G1V 0A6, Canada
[5] Royal Inst Technol, KTH, Dept Chem, S-10044 Stockholm, Sweden
[6] Def Sci & Technol Org, Dept Def, Edinburgh, SA 5111, Australia
关键词
ATMOSPHERIC CORROSION; GLASS; RESOLUTION; EMISSION;
D O I
10.1063/1.5113624
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a configurable guided-wave planar glass-chip laser that produces low-noise and high-quality continuous-wave laser emission tunable from 2.82 to 2.95 mu m. The laser has a low threshold and intrinsic power and mode stability attributable to the high overlap of gain volume and pump mode defined by an ultrafast laser inscribed waveguide. The laser emission is single transverse-mode with a Gaussian spatial profile and M-x,y(2) similar to 1.05, 1.10. The power drift is similar to 0.08% rms over similar to 2 h. When configured in a spectrally free-running cavity, the guided-wave laser emits up to 170 mW. The benefit of low-noise and stable wavelength emission of this hydroxide resonant laser is demonstrated by acquiring high signal-to-noise images and spectroscopy of a corroded copper surface film with corrosion products containing water and hydroxide ions with a scattering-scanning near-field optical microscope. (C) 2019 Author(s).
引用
收藏
页数:6
相关论文
共 25 条
[1]   Ultrafast laser written active devices [J].
Ams, Martin ;
Marshall, Graham D. ;
Dekker, Peter ;
Piper, James A. ;
Withford, Michael J. .
LASER & PHOTONICS REVIEWS, 2009, 3 (06) :535-544
[2]   Ultrafast laser inscription: perspectives on future integrated applications [J].
Choudhury, Debaditya ;
Macdonald, John R. ;
Kar, Ajoy K. .
LASER & PHOTONICS REVIEWS, 2014, 8 (06) :827-846
[3]  
Chuchumishev D., 2014, 2014 C LAS EL CLEO L, P1
[4]   Writing waveguides in glass with a femtosecond laser [J].
Davis, KM ;
Miura, K ;
Sugimoto, N ;
Hirao, K .
OPTICS LETTERS, 1996, 21 (21) :1729-1731
[5]   Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications [J].
Grivas, Christos .
PROGRESS IN QUANTUM ELECTRONICS, 2016, 45-46 :3-160
[6]   Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques [J].
Grivas, Christos .
PROGRESS IN QUANTUM ELECTRONICS, 2011, 35 (06) :159-239
[7]   Femtosecond laser induced structural changes in fluorozirconate glass [J].
Gross, Simon ;
Lancaster, David G. ;
Ebendorff-Heidepriem, Heike ;
Monro, Tanya M. ;
Fuerbach, Alexander ;
Withford, Michael J. .
OPTICAL MATERIALS EXPRESS, 2013, 3 (05) :574-583
[8]   Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics [J].
Gross, Simon ;
Ams, Martin ;
Palmer, Guido ;
Miese, Christopher T. ;
Williams, Robert J. ;
Marshall, Graham D. ;
Fuerbach, Alexander ;
Withford, Michael J. ;
Lancaster, David G. ;
Ebendorff-Heidepriem, Heike .
INTERNATIONAL JOURNAL OF APPLIED GLASS SCIENCE, 2012, 3 (04) :332-348
[9]   Alkanethiols as Inhibitors for the Atmospheric Corrosion of Copper Induced by Formic Acid: Effect of Chain Length [J].
Hosseinpour, Saman ;
Johnson, C. Magnus ;
Leygraf, Christofer .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (06) :C270-C276
[10]   Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 μm [J].
Jackson, SD .
OPTICS LETTERS, 2004, 29 (04) :334-336