SOME BENNETT-COPSON TYPE INEQUALITIES ON TIME SCALES

被引:12
作者
Saker, S. H. [1 ]
Mahmoud, R. R. [2 ]
Peterson, A. [3 ]
机构
[1] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[2] Fayoum Univ, Fac Sci, Dept Math, Al Fayyum, Egypt
[3] Univ Nebraska, Dept Math, Lincoln, NE 68588 USA
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2016年 / 10卷 / 02期
关键词
Hardy's type inequality; Copson's inequality; Leindler's inequality; Bennett's inequality; time scales; INTEGRAL-INEQUALITIES; HARDY; LEINDLER;
D O I
10.7153/jmi-10-37
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we will prove some new dynamic inequalities with two different weighted functions on a time scale. As special cases, the inequalities contain some dynamic inequalities on time scales and also involve some discrete inequalities formulated by Copson, Leindler, Bennett, Chen and Yang. The results will be proved by using Holder's inequality and Minkowski's inequality on time scales.
引用
收藏
页码:471 / 489
页数:19
相关论文
共 38 条
[31]   Generalized Hardy, Copson, Leindler and Bennett inequalities on time scales [J].
Saker, S. H. ;
O'Regan, D. ;
Agarwal, R. .
MATHEMATISCHE NACHRICHTEN, 2014, 287 (5-6) :686-698
[32]  
Saker S.H., MATH SLOVAC IN PRESS
[33]  
Saker S.H., 2014, Analysis, V34, P391, DOI [10.1515/anly-2012-1234, DOI 10.1515/ANLY-2012-1234]
[34]  
SAKER S. H., MEDITERR J IN PRESS
[35]  
Saker S.H., B MALAYS MA IN PRESS
[36]  
SAKER SH, 2014, MEDITERR J MATH, V8, P1
[37]  
Talenti G., 1967, ANN SCUOLA NORM SUP, V21, P167
[38]  
Tomaselli G., 1969, Boll. Un. Mat. Ital., V2, P622