Synthesis and characterization of nano-hydroxyapatite added with magnesium obtained by wet chemical precipitation

被引:33
作者
Correa-Pina, Brandon A. [1 ]
Gomez-Vazquez, Omar M. [1 ]
Londono-Restrepo, Sandra M. [2 ]
Zubieta-Otero, Luis F. [1 ]
Millan-Malo, Beatriz M. [2 ]
Rodriguez-Garcia, Mario E. [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Ctr Fis Aplicada & Tecnol Avanzada, Posgrad Ciencia & Ingn Mat, Campus Juriquilla, Queretaro 76230, Qro, Mexico
[2] Univ Nacl Autonoma Mexico, Ctr Fis Aplicada & Tecnol Avanzada, Dept Nanotecnol, Campus Juriquilla, Queretaro 76230, Qro, Mexico
关键词
Magnesium; Physicochemical properties; Calcination; Nanometric crystal size; Coalescence; Recrystallization; THERMAL-DECOMPOSITION; BIO-HYDROXYAPATITE; CRYSTAL SIZE; BOVINE; STATE;
D O I
10.1016/j.pnsc.2021.06.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Biogenic hydroxyapatites from mammalian bones naturally contain traces of ions, like Mg, which play a vital role in the bone remodeling process. In this way, synthetic hydroxyapatites should include this kind of mineral. In this work, hydroxyapatite added with Mg was synthesized by wet precipitation using (NH4)H2PO4, Ca(NO3)(2)center dot 4H(2)O, and Mg(NO3)(2)center dot 6H(2)O (0, 0.032, 0.061, and 0.123 M). Inductively coupled plasma and X-ray diffraction evidenced the Mg inclusion in the hydroxyapatite lattice in the same levels reported for natural hydroxyapatites. The calcination a 600 degrees C was performed to remove the reaction by-products, but it also gave rise to physicochemical changes as the coalescence and crystals recrystallization. It produced, in turn, an improvement in the crystalline quality, according to Raman analysis. Despite those physicochemical changes, all the samples remained nanometric according to scanning electron microscopy imaging.
引用
收藏
页码:575 / 582
页数:8
相关论文
共 33 条
[1]  
Bahrololoom ME, 2009, J CERAM PROCESS RES, V10, P129
[2]   Hydroxyapatite derived from food industry bio-wastes: Syntheses, properties and its potential multifunctional applications [J].
Bee, Soo-Ling ;
Hamid, Z. A. Abdul .
CERAMICS INTERNATIONAL, 2020, 46 (11) :17149-17175
[3]   Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics [J].
Bose, Susmita ;
Fielding, Gary ;
Tarafder, Solaiman ;
Bandyopadhyay, Amit .
TRENDS IN BIOTECHNOLOGY, 2013, 31 (10) :594-605
[4]   Magnesium and Osteoporosis: Current State of Knowledge and Future Research Directions [J].
Castiglioni, Sara ;
Cazzaniga, Alessandra ;
Albisetti, Walter ;
Maier, Jeanette A. M. .
NUTRIENTS, 2013, 5 (08) :3022-3033
[5]   Review on Thermal Decomposition of Ammonium Nitrate [J].
Chaturvedi, Shalini ;
Dave, Pragnesh N. .
JOURNAL OF ENERGETIC MATERIALS, 2013, 31 (01) :1-26
[6]   THE RELATIONSHIP OF NUTRITIONAL STATUS, BODY AND MANDIBULAR BONE MINERAL DENSITY, TOOTH LOSS AND FRACTURE RISK (FRAX) IN PRE-AND POSTMENOPAUSAL WOMEN WITH PERIODONTITIS [J].
de los Angeles Aguilera-Barreiro, Ma ;
Fabiola Davalos-Vazquez, Karla ;
Jimenez-Mendez, Carolina ;
Jimenez-Mendoza, Daniel ;
Angel Olivarez-Padron, Luis ;
Enrique Rodriguez-Garcia, Mario .
NUTRICION HOSPITALARIA, 2014, 29 (06) :1419-1426
[7]   A kinetic and mechanistic study of the thermal decomposition of calcium nitrate [J].
Ettarh, C ;
Galwey, AK .
THERMOCHIMICA ACTA, 1996, 288 (1-2) :203-219
[8]   A mechanistic study into the reactions of ammonium nitrate with pyrite [J].
Gunawan, Richard ;
Freij, Sawsan ;
Zhang, Dong-ke ;
Beach, Fiona ;
Littlefair, Michael .
CHEMICAL ENGINEERING SCIENCE, 2006, 61 (17) :5781-5790
[9]   Chemical and microstructural characterization of natural hydroxyapatite derived from pig bones [J].
Janus, Anna Maria ;
Faryna, Marek ;
Haberko, Krzysztof ;
Rakowska, Anna ;
Panz, Tomasz .
MICROCHIMICA ACTA, 2008, 161 (3-4) :349-353
[10]   Temperature dependent structural and vibrational properties of hydroxyapatite: A theoretical and experimental study [J].
Kebiroglu, M. Hanifi ;
Orek, Cahit ;
Bulut, Niyazi ;
Kaygili, Omer ;
Keser, Serhat ;
Ates, Tankut .
CERAMICS INTERNATIONAL, 2017, 43 (17) :15899-15904