Stable difference schemes for parabolic systems - A numerical radius approach II

被引:4
作者
Goldberg, M [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
parabolic systems; finite difference schemes; stability; numerical radii;
D O I
10.1137/S0036142997328251
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a numerical radius approach is taken in order to further discuss stability conditions for a well-known family of finite difference schemes for the initial value problem associated with the Petrowski well-posed, multispace-dimensional parabolic system [GRAPHICS] where A(pq), B-p, and C are constant matrices, A(pq) being Hermitian.
引用
收藏
页码:1995 / 2003
页数:9
相关论文
共 9 条
[1]   A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type [J].
Crank, J ;
Nicolson, P .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 6 (3-4) :207-226
[2]  
Friedman A., 1963, GEN FUNCTIONS PARTIA
[3]   Stable difference schemes for parabolic systems - A numerical radius approach [J].
Goldberg, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (02) :478-493
[4]   ON THE NUMERICAL RADIUS AND ITS APPLICATIONS [J].
GOLDBERG, M ;
TADMOR, E .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1982, 42 (FEB) :263-284
[5]  
Kreiss H. O., 1962, BIT, V2, P153, DOI DOI 10.1007/BF01957330
[6]   *UBER EINE METHODE ZUR LOSUNG DER WARMELEITUNGSGLEICHUNG [J].
LAASONEN, P .
ACTA MATHEMATICA, 1949, 81 (03) :309-317
[7]  
PEARCY C, 1966, MICH MATH J, V13, P289
[8]  
Richtmyer R. D., 1967, Difference Methods for Initial-Value Problems
[9]  
THOMEE V, 1990, HDB NUMERICAL ANAL, V1, P7