On the diagonal Pade approximants of meromorphic functions

被引:3
作者
Lubinsky, DS [1 ]
机构
[1] UNIV WITWATERSRAND,DEPT MATH,JOHANNESBURG 2050,SOUTH AFRICA
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 1996年 / 7卷 / 01期
关键词
D O I
10.1016/0019-3577(96)88658-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be meromorphic in C, and analytic at 0, and let E(nn)(r) denote the error of best rational approximation of f by rational functions of type (n,n) on some small disc {z:\z\less than or equal to r}. We prove: (I) If lim sup(n)-->infinity E(nn)(r)(1/n2) < 1, then the Baker-Gammel-Wills conjecture is true for f. (II) If E(nn)(r)(1/(2n+1)) is non-increasing in n, then (a) [n/n] has less than or equal to 2l + o(n(2)/\log E(n-l,n-1)(r)\) poles in \z\ less than or equal to r if f has l poles there. (b) If lim(n)-->infinity inf E(nn)(r)(1/n2) < 1, then the Baker-Gammel-Wills conjecture is true for f. (c) If f is entire and lim(n)-->infinity sup E(nn)(r)(1/n2) < 1, then the full diagonal sequence {[n/n]} converges pointwise to f. We also discuss some extensions and consequences of these results.
引用
收藏
页码:97 / 110
页数:14
相关论文
共 17 条
[1]  
[Anonymous], 1975, Essentials of Pade Approximations
[2]  
BAKER GA, 1981, ENCY MATH ITS APPLIC, V13
[3]  
CUYT A, IN PRESS P AM MATH S
[4]   ESTIMATES OF NORM OF HOLOMORPHIC COMPONENT OF A MEROMORPHIC FUNCTION [J].
GONCAR, AA ;
GRIGORJAN, LD .
MATHEMATICS OF THE USSR-SBORNIK, 1976, 28 (04) :571-575
[5]   ESTIMATES OF NORM OF HOLOMORPHIC COMPONENTS OF FUNCTIONS MEROMORPHIC IN DOMAINS WITH A SMOOTH BOUNDARY [J].
GRIGORJAN, LD .
MATHEMATICS OF THE USSR-SBORNIK, 1976, 29 (01) :139-146
[6]   PADE-TABLES OF A CLASS OF ENTIRE-FUNCTIONS [J].
LUBINSKY, DS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 94 (03) :399-405
[7]   ON CONVERGENCE OF RATIONAL AND BEST RATIONAL-APPROXIMATIONS [J].
LUBINSKY, DS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1984, 98 (02) :419-434
[8]  
LUBINSKY DS, 1992, SPR S COMP, V19, P191
[9]   DISTRIBUTION OF POLES OF DIAGONAL RATIONAL APPROXIMANTS TO FUNCTIONS OF FAST RATIONAL APPROXIMABILITY [J].
LUBINSKY, DS .
CONSTRUCTIVE APPROXIMATION, 1991, 7 (04) :501-519
[10]  
LUBINSKY DS, IN PRESS T AM MATH S