T>0 ensemble-state density functional theory via Legendre transform

被引:51
作者
Eschrig, Helmut [1 ]
机构
[1] IFW Dresden, D-0111171 Dresden, Germany
来源
PHYSICAL REVIEW B | 2010年 / 82卷 / 20期
关键词
SYSTEMS; ENERGY;
D O I
10.1103/PhysRevB.82.205120
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A logical foundation of equilibrium state density functional theory in a Kohn-Sham-type formulation is presented on the basis of Mermin's treatment of the grand canonical state by exploiting functional Legendre transforms. It is simpler and more satisfactory compared to the usual derivation of the ground-state theory and free of most remaining open points of the latter. The existence of the functional derivative of the corresponding density functional F[n] at all densities of grand canonical equilibrium states is proved even in the spin-density matrix version of the theory. It may, in particular, be relevant with respect to cases of spontaneous symmetry breaking such as noncollinear magnetism and orbital order.
引用
收藏
页数:9
相关论文
共 18 条
[1]   Thermodynamics as an alternative foundation for zero-temperature density-functional theory and spin-density-functional theory [J].
Argaman, N ;
Makov, G .
PHYSICAL REVIEW B, 2002, 66 (05) :1-4
[2]   Legendre-transform functionals for spin-density-functional theory [J].
Ayers, Paul W. ;
Yang, Weitao .
JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (22)
[3]   Density functional theory of magnetic systems revisited [J].
Eschrig, H ;
Pickett, WE .
SOLID STATE COMMUNICATIONS, 2001, 118 (03) :123-127
[4]  
Eschrig H., 2003, Fundamentals of Density Functional Theory
[5]  
Eschrig H., 1996, FUNDAMENTALS DENSITY
[6]   DENSITY-FUNCTIONAL APPROACH TO METAL-INSULATOR-TRANSITION IN DOPED SEMICONDUCTORS [J].
GHAZALI, A ;
LEROUXHUGON, P .
PHYSICAL REVIEW LETTERS, 1978, 41 (22) :1569-1572
[7]   Extension of exact-exchange density functional theory of solids to finite temperatures [J].
Greiner, Maximilian ;
Carrier, Pierre ;
Goerling, Andreas .
PHYSICAL REVIEW B, 2010, 81 (15)
[8]   Hohenberg-Kohn theory including spin magnetism and magnetic fields [J].
Kohn, W ;
Savin, A ;
Ullrich, CA .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2004, 100 (01) :20-21
[9]   GROUND-STATE ENERGY OF A MANY-FERMION SYSTEM [J].
KOHN, W ;
LUTTINGER, JM .
PHYSICAL REVIEW, 1960, 118 (01) :41-45
[10]   SELF-CONSISTENT EQUATIONS INCLUDING EXCHANGE AND CORRELATION EFFECTS [J].
KOHN, W ;
SHAM, LJ .
PHYSICAL REVIEW, 1965, 140 (4A) :1133-&