Classical Solutions of Hyperbolic Equations with Nonlocal Potentials

被引:11
作者
Zaitseva, N. V. [1 ]
机构
[1] Lomonosov Moscow State Univ, Fac Computat Math & Cybernet, Moscow 119991, Russia
关键词
hyperbolic equation; differential-difference equation; classical solution; DIRICHLET PROBLEM; HALF-PLANE;
D O I
10.1134/S1064562421030157
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A three-parameter family of global solutions for a two-dimensional hyperbolic differential-difference equation with a nonlocal potential is constructed. A theorem that the obtained solutions are classical is proved.
引用
收藏
页码:127 / 129
页数:3
相关论文
共 15 条
[1]  
Bernoulli J., 1728, Commentarii Academiae Scientiarum Imperialis Petropolitanae, V3, P13
[2]  
Burkhardt H, 1908, Jahresber. Deutsch. Math.-Ver, V10, P1
[3]   ON THE HALF-PLANE DIRICHLET PROBLEM FOR DIFFERENTIAL-DIFFERENCE ELLIPTIC EQUATIONS WITH SEVERAL NONLOCAL TERMS [J].
Muravnik, A. .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2017, 12 (06) :130-143
[4]   Half-plane differential-difference elliptic problems with general-kind nonlocal potentials [J].
Muravnik, A. B. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2022, 67 (05) :1101-1120
[5]   Elliptic Problems with Nonlocal Potential Arising in Models of Nonlinear Optics [J].
Muravnik, A. B. .
MATHEMATICAL NOTES, 2019, 105 (5-6) :734-746
[6]   Asymptotic properties of solutions of the Dirichlet problem in the half-plane for differential-difference elliptic equations [J].
Muravnik, A. B. .
MATHEMATICAL NOTES, 2016, 100 (3-4) :579-588
[7]  
Muravnik A B, 2017, SOVR MAT FUNDAM NAPR, V63, P678
[8]  
Muravnik A.B, 2014, SOVREM MAT FUNDAM NA, V52, P3
[9]  
Pinney E., 1958, Ordinary Difference-Differential Equations
[10]  
SKUBACHEVSKII A, 1997, ELLIPTIC FUNCTIONAL