Darboux integrability of generalized Yang-Mills Hamiltonian system

被引:12
作者
Llibre, Jaume [1 ]
Valls, Claudia [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
[2] Univ Tecn Lisboa, Inst Super Tecn, Dept Matemat, Av Rovisco Pais, P-1049001 Lisbon, Portugal
关键词
Hamiltonian systems; weight-homogenous differential systems; polynomial integrability; PAINLEVE PROPERTY; INTEGRALS; INVARIANT; EQUATIONS; MOTION;
D O I
10.1080/14029251.2016.1175820
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the generalized Yang-Mills system with Hamiltonian H = (p(1)(2) + p(2)(2))/2 + V(q(1),q(2)) where V = 1/2(aq(1)(2) + bq(2)(2)) + (cq(1)(4) + 2eq(1)(2)q(2)(2) + dq(2)(4))/4 is not completely integrable with Darboux first integrals.
引用
收藏
页码:234 / 242
页数:9
相关论文
共 50 条
[31]   The analysis of inhomogeneous Yang-Mills connections on closed Riemannian manifold [J].
Huang, Teng .
JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (07)
[32]   A Stochastic Analysis Approach to Lattice Yang-Mills at Strong Coupling [J].
Shen, Hao ;
Zhu, Rongchan ;
Zhu, Xiangchan .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 400 (02) :805-851
[33]   Yang-Mills equation for the nuclear geometrical collective model connexion [J].
Sparks, N. ;
Rosensteel, G. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (02)
[34]   The Yang-Mills heat flow with random distributional initial data [J].
Cao, Sky ;
Chatterjee, Sourav .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2023, 48 (02) :209-251
[35]   GLOBAL DYNAMICS OF A YANG-MILLS FIELD ON AN ASYMPTOTICALLY HYPERBOLIC SPACE [J].
Bizon, Piotr ;
Mach, Patryk .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (03) :2029-2048
[36]   Spinors, strings, integrable models, and decomposed Yang-Mills theory [J].
Ioannidou, Theodora ;
Jiang, Ying ;
Niemi, Antti J. .
PHYSICAL REVIEW D, 2014, 90 (02)
[37]   Langevin dynamic for the 2D Yang-Mills measure [J].
Chandra, Ajay ;
Chevyrev, Ilya ;
Hairer, Martin ;
Shen, Hao .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2022, 136 (01) :1-147
[38]   Hyperbolic Lattices and Two-Dimensional Yang-Mills Theory [J].
Shankar, G. ;
Maciejko, Joseph .
PHYSICAL REVIEW LETTERS, 2024, 133 (14)
[39]   Mass generation in Landau-gauge Yang-Mills theory [J].
Eichmann, Gernot ;
Pawlowski, Jan M. ;
Silva, Joao M. .
PHYSICAL REVIEW D, 2021, 104 (11)
[40]   LOW REGULARITY WELL-POSEDNESS FOR THE YANG-MILLS SYSTEM IN FOURIER-LEBESGUE SPACES [J].
Pecher, Hartmut .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (04) :3131-3148